This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert an operation associative law to class notation. (Contributed by Mario Carneiro, 1-Jun-2013) (Revised by Mario Carneiro, 26-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | caovassg.1 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x F y ) F z ) = ( x F ( y F z ) ) ) |
|
| Assertion | caovassg | |- ( ( ph /\ ( A e. S /\ B e. S /\ C e. S ) ) -> ( ( A F B ) F C ) = ( A F ( B F C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovassg.1 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x F y ) F z ) = ( x F ( y F z ) ) ) |
|
| 2 | 1 | ralrimivvva | |- ( ph -> A. x e. S A. y e. S A. z e. S ( ( x F y ) F z ) = ( x F ( y F z ) ) ) |
| 3 | oveq1 | |- ( x = A -> ( x F y ) = ( A F y ) ) |
|
| 4 | 3 | oveq1d | |- ( x = A -> ( ( x F y ) F z ) = ( ( A F y ) F z ) ) |
| 5 | oveq1 | |- ( x = A -> ( x F ( y F z ) ) = ( A F ( y F z ) ) ) |
|
| 6 | 4 5 | eqeq12d | |- ( x = A -> ( ( ( x F y ) F z ) = ( x F ( y F z ) ) <-> ( ( A F y ) F z ) = ( A F ( y F z ) ) ) ) |
| 7 | oveq2 | |- ( y = B -> ( A F y ) = ( A F B ) ) |
|
| 8 | 7 | oveq1d | |- ( y = B -> ( ( A F y ) F z ) = ( ( A F B ) F z ) ) |
| 9 | oveq1 | |- ( y = B -> ( y F z ) = ( B F z ) ) |
|
| 10 | 9 | oveq2d | |- ( y = B -> ( A F ( y F z ) ) = ( A F ( B F z ) ) ) |
| 11 | 8 10 | eqeq12d | |- ( y = B -> ( ( ( A F y ) F z ) = ( A F ( y F z ) ) <-> ( ( A F B ) F z ) = ( A F ( B F z ) ) ) ) |
| 12 | oveq2 | |- ( z = C -> ( ( A F B ) F z ) = ( ( A F B ) F C ) ) |
|
| 13 | oveq2 | |- ( z = C -> ( B F z ) = ( B F C ) ) |
|
| 14 | 13 | oveq2d | |- ( z = C -> ( A F ( B F z ) ) = ( A F ( B F C ) ) ) |
| 15 | 12 14 | eqeq12d | |- ( z = C -> ( ( ( A F B ) F z ) = ( A F ( B F z ) ) <-> ( ( A F B ) F C ) = ( A F ( B F C ) ) ) ) |
| 16 | 6 11 15 | rspc3v | |- ( ( A e. S /\ B e. S /\ C e. S ) -> ( A. x e. S A. y e. S A. z e. S ( ( x F y ) F z ) = ( x F ( y F z ) ) -> ( ( A F B ) F C ) = ( A F ( B F C ) ) ) ) |
| 17 | 2 16 | mpan9 | |- ( ( ph /\ ( A e. S /\ B e. S /\ C e. S ) ) -> ( ( A F B ) F C ) = ( A F ( B F C ) ) ) |