This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Add one to an element of a finite set of integers. (Contributed by Jeff Madsen, 6-Jun-2010) (Revised by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzp1elp1 | |- ( K e. ( M ... N ) -> ( K + 1 ) e. ( M ... ( N + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz | |- ( K e. ( M ... N ) -> K e. ( ZZ>= ` M ) ) |
|
| 2 | peano2uz | |- ( K e. ( ZZ>= ` M ) -> ( K + 1 ) e. ( ZZ>= ` M ) ) |
|
| 3 | 1 2 | syl | |- ( K e. ( M ... N ) -> ( K + 1 ) e. ( ZZ>= ` M ) ) |
| 4 | elfzuz3 | |- ( K e. ( M ... N ) -> N e. ( ZZ>= ` K ) ) |
|
| 5 | eluzp1p1 | |- ( N e. ( ZZ>= ` K ) -> ( N + 1 ) e. ( ZZ>= ` ( K + 1 ) ) ) |
|
| 6 | 4 5 | syl | |- ( K e. ( M ... N ) -> ( N + 1 ) e. ( ZZ>= ` ( K + 1 ) ) ) |
| 7 | elfzuzb | |- ( ( K + 1 ) e. ( M ... ( N + 1 ) ) <-> ( ( K + 1 ) e. ( ZZ>= ` M ) /\ ( N + 1 ) e. ( ZZ>= ` ( K + 1 ) ) ) ) |
|
| 8 | 3 6 7 | sylanbrc | |- ( K e. ( M ... N ) -> ( K + 1 ) e. ( M ... ( N + 1 ) ) ) |