This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrange a sum via an arbitrary bijection on ( M ... N ) . (Contributed by Mario Carneiro, 27-Feb-2014) (Revised by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqf1o.1 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
|
| seqf1o.2 | |- ( ( ph /\ ( x e. C /\ y e. C ) ) -> ( x .+ y ) = ( y .+ x ) ) |
||
| seqf1o.3 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
||
| seqf1o.4 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
||
| seqf1o.5 | |- ( ph -> C C_ S ) |
||
| seqf1o.6 | |- ( ph -> F : ( M ... N ) -1-1-onto-> ( M ... N ) ) |
||
| seqf1o.7 | |- ( ( ph /\ x e. ( M ... N ) ) -> ( G ` x ) e. C ) |
||
| seqf1o.8 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( H ` k ) = ( G ` ( F ` k ) ) ) |
||
| Assertion | seqf1o | |- ( ph -> ( seq M ( .+ , H ) ` N ) = ( seq M ( .+ , G ) ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqf1o.1 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
|
| 2 | seqf1o.2 | |- ( ( ph /\ ( x e. C /\ y e. C ) ) -> ( x .+ y ) = ( y .+ x ) ) |
|
| 3 | seqf1o.3 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
|
| 4 | seqf1o.4 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 5 | seqf1o.5 | |- ( ph -> C C_ S ) |
|
| 6 | seqf1o.6 | |- ( ph -> F : ( M ... N ) -1-1-onto-> ( M ... N ) ) |
|
| 7 | seqf1o.7 | |- ( ( ph /\ x e. ( M ... N ) ) -> ( G ` x ) e. C ) |
|
| 8 | seqf1o.8 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( H ` k ) = ( G ` ( F ` k ) ) ) |
|
| 9 | 7 | fmpttd | |- ( ph -> ( x e. ( M ... N ) |-> ( G ` x ) ) : ( M ... N ) --> C ) |
| 10 | oveq2 | |- ( x = M -> ( M ... x ) = ( M ... M ) ) |
|
| 11 | f1oeq23 | |- ( ( ( M ... x ) = ( M ... M ) /\ ( M ... x ) = ( M ... M ) ) -> ( f : ( M ... x ) -1-1-onto-> ( M ... x ) <-> f : ( M ... M ) -1-1-onto-> ( M ... M ) ) ) |
|
| 12 | 10 10 11 | syl2anc | |- ( x = M -> ( f : ( M ... x ) -1-1-onto-> ( M ... x ) <-> f : ( M ... M ) -1-1-onto-> ( M ... M ) ) ) |
| 13 | 10 | feq2d | |- ( x = M -> ( g : ( M ... x ) --> C <-> g : ( M ... M ) --> C ) ) |
| 14 | 12 13 | anbi12d | |- ( x = M -> ( ( f : ( M ... x ) -1-1-onto-> ( M ... x ) /\ g : ( M ... x ) --> C ) <-> ( f : ( M ... M ) -1-1-onto-> ( M ... M ) /\ g : ( M ... M ) --> C ) ) ) |
| 15 | fveq2 | |- ( x = M -> ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , ( g o. f ) ) ` M ) ) |
|
| 16 | fveq2 | |- ( x = M -> ( seq M ( .+ , g ) ` x ) = ( seq M ( .+ , g ) ` M ) ) |
|
| 17 | 15 16 | eqeq12d | |- ( x = M -> ( ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , g ) ` x ) <-> ( seq M ( .+ , ( g o. f ) ) ` M ) = ( seq M ( .+ , g ) ` M ) ) ) |
| 18 | 14 17 | imbi12d | |- ( x = M -> ( ( ( f : ( M ... x ) -1-1-onto-> ( M ... x ) /\ g : ( M ... x ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , g ) ` x ) ) <-> ( ( f : ( M ... M ) -1-1-onto-> ( M ... M ) /\ g : ( M ... M ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` M ) = ( seq M ( .+ , g ) ` M ) ) ) ) |
| 19 | 18 | 2albidv | |- ( x = M -> ( A. g A. f ( ( f : ( M ... x ) -1-1-onto-> ( M ... x ) /\ g : ( M ... x ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , g ) ` x ) ) <-> A. g A. f ( ( f : ( M ... M ) -1-1-onto-> ( M ... M ) /\ g : ( M ... M ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` M ) = ( seq M ( .+ , g ) ` M ) ) ) ) |
| 20 | 19 | imbi2d | |- ( x = M -> ( ( ph -> A. g A. f ( ( f : ( M ... x ) -1-1-onto-> ( M ... x ) /\ g : ( M ... x ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , g ) ` x ) ) ) <-> ( ph -> A. g A. f ( ( f : ( M ... M ) -1-1-onto-> ( M ... M ) /\ g : ( M ... M ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` M ) = ( seq M ( .+ , g ) ` M ) ) ) ) ) |
| 21 | oveq2 | |- ( x = k -> ( M ... x ) = ( M ... k ) ) |
|
| 22 | f1oeq23 | |- ( ( ( M ... x ) = ( M ... k ) /\ ( M ... x ) = ( M ... k ) ) -> ( f : ( M ... x ) -1-1-onto-> ( M ... x ) <-> f : ( M ... k ) -1-1-onto-> ( M ... k ) ) ) |
|
| 23 | 21 21 22 | syl2anc | |- ( x = k -> ( f : ( M ... x ) -1-1-onto-> ( M ... x ) <-> f : ( M ... k ) -1-1-onto-> ( M ... k ) ) ) |
| 24 | 21 | feq2d | |- ( x = k -> ( g : ( M ... x ) --> C <-> g : ( M ... k ) --> C ) ) |
| 25 | 23 24 | anbi12d | |- ( x = k -> ( ( f : ( M ... x ) -1-1-onto-> ( M ... x ) /\ g : ( M ... x ) --> C ) <-> ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) ) ) |
| 26 | fveq2 | |- ( x = k -> ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , ( g o. f ) ) ` k ) ) |
|
| 27 | fveq2 | |- ( x = k -> ( seq M ( .+ , g ) ` x ) = ( seq M ( .+ , g ) ` k ) ) |
|
| 28 | 26 27 | eqeq12d | |- ( x = k -> ( ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , g ) ` x ) <-> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) ) |
| 29 | 25 28 | imbi12d | |- ( x = k -> ( ( ( f : ( M ... x ) -1-1-onto-> ( M ... x ) /\ g : ( M ... x ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , g ) ` x ) ) <-> ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) ) ) |
| 30 | 29 | 2albidv | |- ( x = k -> ( A. g A. f ( ( f : ( M ... x ) -1-1-onto-> ( M ... x ) /\ g : ( M ... x ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , g ) ` x ) ) <-> A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) ) ) |
| 31 | 30 | imbi2d | |- ( x = k -> ( ( ph -> A. g A. f ( ( f : ( M ... x ) -1-1-onto-> ( M ... x ) /\ g : ( M ... x ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , g ) ` x ) ) ) <-> ( ph -> A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) ) ) ) |
| 32 | oveq2 | |- ( x = ( k + 1 ) -> ( M ... x ) = ( M ... ( k + 1 ) ) ) |
|
| 33 | f1oeq23 | |- ( ( ( M ... x ) = ( M ... ( k + 1 ) ) /\ ( M ... x ) = ( M ... ( k + 1 ) ) ) -> ( f : ( M ... x ) -1-1-onto-> ( M ... x ) <-> f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) ) ) |
|
| 34 | 32 32 33 | syl2anc | |- ( x = ( k + 1 ) -> ( f : ( M ... x ) -1-1-onto-> ( M ... x ) <-> f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) ) ) |
| 35 | 32 | feq2d | |- ( x = ( k + 1 ) -> ( g : ( M ... x ) --> C <-> g : ( M ... ( k + 1 ) ) --> C ) ) |
| 36 | 34 35 | anbi12d | |- ( x = ( k + 1 ) -> ( ( f : ( M ... x ) -1-1-onto-> ( M ... x ) /\ g : ( M ... x ) --> C ) <-> ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) ) ) |
| 37 | fveq2 | |- ( x = ( k + 1 ) -> ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , ( g o. f ) ) ` ( k + 1 ) ) ) |
|
| 38 | fveq2 | |- ( x = ( k + 1 ) -> ( seq M ( .+ , g ) ` x ) = ( seq M ( .+ , g ) ` ( k + 1 ) ) ) |
|
| 39 | 37 38 | eqeq12d | |- ( x = ( k + 1 ) -> ( ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , g ) ` x ) <-> ( seq M ( .+ , ( g o. f ) ) ` ( k + 1 ) ) = ( seq M ( .+ , g ) ` ( k + 1 ) ) ) ) |
| 40 | 36 39 | imbi12d | |- ( x = ( k + 1 ) -> ( ( ( f : ( M ... x ) -1-1-onto-> ( M ... x ) /\ g : ( M ... x ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , g ) ` x ) ) <-> ( ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` ( k + 1 ) ) = ( seq M ( .+ , g ) ` ( k + 1 ) ) ) ) ) |
| 41 | 40 | 2albidv | |- ( x = ( k + 1 ) -> ( A. g A. f ( ( f : ( M ... x ) -1-1-onto-> ( M ... x ) /\ g : ( M ... x ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , g ) ` x ) ) <-> A. g A. f ( ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` ( k + 1 ) ) = ( seq M ( .+ , g ) ` ( k + 1 ) ) ) ) ) |
| 42 | 41 | imbi2d | |- ( x = ( k + 1 ) -> ( ( ph -> A. g A. f ( ( f : ( M ... x ) -1-1-onto-> ( M ... x ) /\ g : ( M ... x ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , g ) ` x ) ) ) <-> ( ph -> A. g A. f ( ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` ( k + 1 ) ) = ( seq M ( .+ , g ) ` ( k + 1 ) ) ) ) ) ) |
| 43 | oveq2 | |- ( x = N -> ( M ... x ) = ( M ... N ) ) |
|
| 44 | f1oeq23 | |- ( ( ( M ... x ) = ( M ... N ) /\ ( M ... x ) = ( M ... N ) ) -> ( f : ( M ... x ) -1-1-onto-> ( M ... x ) <-> f : ( M ... N ) -1-1-onto-> ( M ... N ) ) ) |
|
| 45 | 43 43 44 | syl2anc | |- ( x = N -> ( f : ( M ... x ) -1-1-onto-> ( M ... x ) <-> f : ( M ... N ) -1-1-onto-> ( M ... N ) ) ) |
| 46 | 43 | feq2d | |- ( x = N -> ( g : ( M ... x ) --> C <-> g : ( M ... N ) --> C ) ) |
| 47 | 45 46 | anbi12d | |- ( x = N -> ( ( f : ( M ... x ) -1-1-onto-> ( M ... x ) /\ g : ( M ... x ) --> C ) <-> ( f : ( M ... N ) -1-1-onto-> ( M ... N ) /\ g : ( M ... N ) --> C ) ) ) |
| 48 | fveq2 | |- ( x = N -> ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , ( g o. f ) ) ` N ) ) |
|
| 49 | fveq2 | |- ( x = N -> ( seq M ( .+ , g ) ` x ) = ( seq M ( .+ , g ) ` N ) ) |
|
| 50 | 48 49 | eqeq12d | |- ( x = N -> ( ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , g ) ` x ) <-> ( seq M ( .+ , ( g o. f ) ) ` N ) = ( seq M ( .+ , g ) ` N ) ) ) |
| 51 | 47 50 | imbi12d | |- ( x = N -> ( ( ( f : ( M ... x ) -1-1-onto-> ( M ... x ) /\ g : ( M ... x ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , g ) ` x ) ) <-> ( ( f : ( M ... N ) -1-1-onto-> ( M ... N ) /\ g : ( M ... N ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` N ) = ( seq M ( .+ , g ) ` N ) ) ) ) |
| 52 | 51 | 2albidv | |- ( x = N -> ( A. g A. f ( ( f : ( M ... x ) -1-1-onto-> ( M ... x ) /\ g : ( M ... x ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , g ) ` x ) ) <-> A. g A. f ( ( f : ( M ... N ) -1-1-onto-> ( M ... N ) /\ g : ( M ... N ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` N ) = ( seq M ( .+ , g ) ` N ) ) ) ) |
| 53 | 52 | imbi2d | |- ( x = N -> ( ( ph -> A. g A. f ( ( f : ( M ... x ) -1-1-onto-> ( M ... x ) /\ g : ( M ... x ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` x ) = ( seq M ( .+ , g ) ` x ) ) ) <-> ( ph -> A. g A. f ( ( f : ( M ... N ) -1-1-onto-> ( M ... N ) /\ g : ( M ... N ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` N ) = ( seq M ( .+ , g ) ` N ) ) ) ) ) |
| 54 | f1of | |- ( f : ( M ... M ) -1-1-onto-> ( M ... M ) -> f : ( M ... M ) --> ( M ... M ) ) |
|
| 55 | 54 | adantr | |- ( ( f : ( M ... M ) -1-1-onto-> ( M ... M ) /\ g : ( M ... M ) --> C ) -> f : ( M ... M ) --> ( M ... M ) ) |
| 56 | elfz3 | |- ( M e. ZZ -> M e. ( M ... M ) ) |
|
| 57 | fvco3 | |- ( ( f : ( M ... M ) --> ( M ... M ) /\ M e. ( M ... M ) ) -> ( ( g o. f ) ` M ) = ( g ` ( f ` M ) ) ) |
|
| 58 | 55 56 57 | syl2anr | |- ( ( M e. ZZ /\ ( f : ( M ... M ) -1-1-onto-> ( M ... M ) /\ g : ( M ... M ) --> C ) ) -> ( ( g o. f ) ` M ) = ( g ` ( f ` M ) ) ) |
| 59 | ffvelcdm | |- ( ( f : ( M ... M ) --> ( M ... M ) /\ M e. ( M ... M ) ) -> ( f ` M ) e. ( M ... M ) ) |
|
| 60 | 54 56 59 | syl2anr | |- ( ( M e. ZZ /\ f : ( M ... M ) -1-1-onto-> ( M ... M ) ) -> ( f ` M ) e. ( M ... M ) ) |
| 61 | fzsn | |- ( M e. ZZ -> ( M ... M ) = { M } ) |
|
| 62 | 61 | eleq2d | |- ( M e. ZZ -> ( ( f ` M ) e. ( M ... M ) <-> ( f ` M ) e. { M } ) ) |
| 63 | elsni | |- ( ( f ` M ) e. { M } -> ( f ` M ) = M ) |
|
| 64 | 62 63 | biimtrdi | |- ( M e. ZZ -> ( ( f ` M ) e. ( M ... M ) -> ( f ` M ) = M ) ) |
| 65 | 64 | imp | |- ( ( M e. ZZ /\ ( f ` M ) e. ( M ... M ) ) -> ( f ` M ) = M ) |
| 66 | 60 65 | syldan | |- ( ( M e. ZZ /\ f : ( M ... M ) -1-1-onto-> ( M ... M ) ) -> ( f ` M ) = M ) |
| 67 | 66 | adantrr | |- ( ( M e. ZZ /\ ( f : ( M ... M ) -1-1-onto-> ( M ... M ) /\ g : ( M ... M ) --> C ) ) -> ( f ` M ) = M ) |
| 68 | 67 | fveq2d | |- ( ( M e. ZZ /\ ( f : ( M ... M ) -1-1-onto-> ( M ... M ) /\ g : ( M ... M ) --> C ) ) -> ( g ` ( f ` M ) ) = ( g ` M ) ) |
| 69 | 58 68 | eqtrd | |- ( ( M e. ZZ /\ ( f : ( M ... M ) -1-1-onto-> ( M ... M ) /\ g : ( M ... M ) --> C ) ) -> ( ( g o. f ) ` M ) = ( g ` M ) ) |
| 70 | seq1 | |- ( M e. ZZ -> ( seq M ( .+ , ( g o. f ) ) ` M ) = ( ( g o. f ) ` M ) ) |
|
| 71 | 70 | adantr | |- ( ( M e. ZZ /\ ( f : ( M ... M ) -1-1-onto-> ( M ... M ) /\ g : ( M ... M ) --> C ) ) -> ( seq M ( .+ , ( g o. f ) ) ` M ) = ( ( g o. f ) ` M ) ) |
| 72 | seq1 | |- ( M e. ZZ -> ( seq M ( .+ , g ) ` M ) = ( g ` M ) ) |
|
| 73 | 72 | adantr | |- ( ( M e. ZZ /\ ( f : ( M ... M ) -1-1-onto-> ( M ... M ) /\ g : ( M ... M ) --> C ) ) -> ( seq M ( .+ , g ) ` M ) = ( g ` M ) ) |
| 74 | 69 71 73 | 3eqtr4d | |- ( ( M e. ZZ /\ ( f : ( M ... M ) -1-1-onto-> ( M ... M ) /\ g : ( M ... M ) --> C ) ) -> ( seq M ( .+ , ( g o. f ) ) ` M ) = ( seq M ( .+ , g ) ` M ) ) |
| 75 | 74 | ex | |- ( M e. ZZ -> ( ( f : ( M ... M ) -1-1-onto-> ( M ... M ) /\ g : ( M ... M ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` M ) = ( seq M ( .+ , g ) ` M ) ) ) |
| 76 | 75 | alrimivv | |- ( M e. ZZ -> A. g A. f ( ( f : ( M ... M ) -1-1-onto-> ( M ... M ) /\ g : ( M ... M ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` M ) = ( seq M ( .+ , g ) ` M ) ) ) |
| 77 | 76 | a1d | |- ( M e. ZZ -> ( ph -> A. g A. f ( ( f : ( M ... M ) -1-1-onto-> ( M ... M ) /\ g : ( M ... M ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` M ) = ( seq M ( .+ , g ) ` M ) ) ) ) |
| 78 | f1oeq1 | |- ( f = t -> ( f : ( M ... k ) -1-1-onto-> ( M ... k ) <-> t : ( M ... k ) -1-1-onto-> ( M ... k ) ) ) |
|
| 79 | feq1 | |- ( g = s -> ( g : ( M ... k ) --> C <-> s : ( M ... k ) --> C ) ) |
|
| 80 | 78 79 | bi2anan9r | |- ( ( g = s /\ f = t ) -> ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) <-> ( t : ( M ... k ) -1-1-onto-> ( M ... k ) /\ s : ( M ... k ) --> C ) ) ) |
| 81 | coeq1 | |- ( g = s -> ( g o. f ) = ( s o. f ) ) |
|
| 82 | coeq2 | |- ( f = t -> ( s o. f ) = ( s o. t ) ) |
|
| 83 | 81 82 | sylan9eq | |- ( ( g = s /\ f = t ) -> ( g o. f ) = ( s o. t ) ) |
| 84 | 83 | seqeq3d | |- ( ( g = s /\ f = t ) -> seq M ( .+ , ( g o. f ) ) = seq M ( .+ , ( s o. t ) ) ) |
| 85 | 84 | fveq1d | |- ( ( g = s /\ f = t ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , ( s o. t ) ) ` k ) ) |
| 86 | simpl | |- ( ( g = s /\ f = t ) -> g = s ) |
|
| 87 | 86 | seqeq3d | |- ( ( g = s /\ f = t ) -> seq M ( .+ , g ) = seq M ( .+ , s ) ) |
| 88 | 87 | fveq1d | |- ( ( g = s /\ f = t ) -> ( seq M ( .+ , g ) ` k ) = ( seq M ( .+ , s ) ` k ) ) |
| 89 | 85 88 | eqeq12d | |- ( ( g = s /\ f = t ) -> ( ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) <-> ( seq M ( .+ , ( s o. t ) ) ` k ) = ( seq M ( .+ , s ) ` k ) ) ) |
| 90 | 80 89 | imbi12d | |- ( ( g = s /\ f = t ) -> ( ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) <-> ( ( t : ( M ... k ) -1-1-onto-> ( M ... k ) /\ s : ( M ... k ) --> C ) -> ( seq M ( .+ , ( s o. t ) ) ` k ) = ( seq M ( .+ , s ) ` k ) ) ) ) |
| 91 | 90 | cbval2vw | |- ( A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) <-> A. s A. t ( ( t : ( M ... k ) -1-1-onto-> ( M ... k ) /\ s : ( M ... k ) --> C ) -> ( seq M ( .+ , ( s o. t ) ) ` k ) = ( seq M ( .+ , s ) ` k ) ) ) |
| 92 | simplll | |- ( ( ( ( ph /\ k e. ( ZZ>= ` M ) ) /\ A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) ) /\ ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) ) -> ph ) |
|
| 93 | 92 1 | sylan | |- ( ( ( ( ( ph /\ k e. ( ZZ>= ` M ) ) /\ A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) ) /\ ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) ) /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
| 94 | 92 2 | sylan | |- ( ( ( ( ( ph /\ k e. ( ZZ>= ` M ) ) /\ A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) ) /\ ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) ) /\ ( x e. C /\ y e. C ) ) -> ( x .+ y ) = ( y .+ x ) ) |
| 95 | 92 3 | sylan | |- ( ( ( ( ( ph /\ k e. ( ZZ>= ` M ) ) /\ A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) ) /\ ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) ) /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
| 96 | simpllr | |- ( ( ( ( ph /\ k e. ( ZZ>= ` M ) ) /\ A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) ) /\ ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) ) -> k e. ( ZZ>= ` M ) ) |
|
| 97 | 92 5 | syl | |- ( ( ( ( ph /\ k e. ( ZZ>= ` M ) ) /\ A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) ) /\ ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) ) -> C C_ S ) |
| 98 | simprl | |- ( ( ( ( ph /\ k e. ( ZZ>= ` M ) ) /\ A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) ) /\ ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) ) -> f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) ) |
|
| 99 | simprr | |- ( ( ( ( ph /\ k e. ( ZZ>= ` M ) ) /\ A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) ) /\ ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) ) -> g : ( M ... ( k + 1 ) ) --> C ) |
|
| 100 | eqid | |- ( w e. ( M ... k ) |-> ( f ` if ( w < ( `' f ` ( k + 1 ) ) , w , ( w + 1 ) ) ) ) = ( w e. ( M ... k ) |-> ( f ` if ( w < ( `' f ` ( k + 1 ) ) , w , ( w + 1 ) ) ) ) |
|
| 101 | eqid | |- ( `' f ` ( k + 1 ) ) = ( `' f ` ( k + 1 ) ) |
|
| 102 | simplr | |- ( ( ( ( ph /\ k e. ( ZZ>= ` M ) ) /\ A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) ) /\ ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) ) -> A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) ) |
|
| 103 | 102 91 | sylib | |- ( ( ( ( ph /\ k e. ( ZZ>= ` M ) ) /\ A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) ) /\ ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) ) -> A. s A. t ( ( t : ( M ... k ) -1-1-onto-> ( M ... k ) /\ s : ( M ... k ) --> C ) -> ( seq M ( .+ , ( s o. t ) ) ` k ) = ( seq M ( .+ , s ) ` k ) ) ) |
| 104 | 93 94 95 96 97 98 99 100 101 103 | seqf1olem2 | |- ( ( ( ( ph /\ k e. ( ZZ>= ` M ) ) /\ A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) ) /\ ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) ) -> ( seq M ( .+ , ( g o. f ) ) ` ( k + 1 ) ) = ( seq M ( .+ , g ) ` ( k + 1 ) ) ) |
| 105 | 104 | exp31 | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) -> ( ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` ( k + 1 ) ) = ( seq M ( .+ , g ) ` ( k + 1 ) ) ) ) ) |
| 106 | 91 105 | biimtrrid | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( A. s A. t ( ( t : ( M ... k ) -1-1-onto-> ( M ... k ) /\ s : ( M ... k ) --> C ) -> ( seq M ( .+ , ( s o. t ) ) ` k ) = ( seq M ( .+ , s ) ` k ) ) -> ( ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` ( k + 1 ) ) = ( seq M ( .+ , g ) ` ( k + 1 ) ) ) ) ) |
| 107 | 106 | alrimdv | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( A. s A. t ( ( t : ( M ... k ) -1-1-onto-> ( M ... k ) /\ s : ( M ... k ) --> C ) -> ( seq M ( .+ , ( s o. t ) ) ` k ) = ( seq M ( .+ , s ) ` k ) ) -> A. f ( ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` ( k + 1 ) ) = ( seq M ( .+ , g ) ` ( k + 1 ) ) ) ) ) |
| 108 | 107 | alrimdv | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( A. s A. t ( ( t : ( M ... k ) -1-1-onto-> ( M ... k ) /\ s : ( M ... k ) --> C ) -> ( seq M ( .+ , ( s o. t ) ) ` k ) = ( seq M ( .+ , s ) ` k ) ) -> A. g A. f ( ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` ( k + 1 ) ) = ( seq M ( .+ , g ) ` ( k + 1 ) ) ) ) ) |
| 109 | 91 108 | biimtrid | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) -> A. g A. f ( ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` ( k + 1 ) ) = ( seq M ( .+ , g ) ` ( k + 1 ) ) ) ) ) |
| 110 | 109 | expcom | |- ( k e. ( ZZ>= ` M ) -> ( ph -> ( A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) -> A. g A. f ( ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` ( k + 1 ) ) = ( seq M ( .+ , g ) ` ( k + 1 ) ) ) ) ) ) |
| 111 | 110 | a2d | |- ( k e. ( ZZ>= ` M ) -> ( ( ph -> A. g A. f ( ( f : ( M ... k ) -1-1-onto-> ( M ... k ) /\ g : ( M ... k ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` k ) = ( seq M ( .+ , g ) ` k ) ) ) -> ( ph -> A. g A. f ( ( f : ( M ... ( k + 1 ) ) -1-1-onto-> ( M ... ( k + 1 ) ) /\ g : ( M ... ( k + 1 ) ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` ( k + 1 ) ) = ( seq M ( .+ , g ) ` ( k + 1 ) ) ) ) ) ) |
| 112 | 20 31 42 53 77 111 | uzind4 | |- ( N e. ( ZZ>= ` M ) -> ( ph -> A. g A. f ( ( f : ( M ... N ) -1-1-onto-> ( M ... N ) /\ g : ( M ... N ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` N ) = ( seq M ( .+ , g ) ` N ) ) ) ) |
| 113 | 4 112 | mpcom | |- ( ph -> A. g A. f ( ( f : ( M ... N ) -1-1-onto-> ( M ... N ) /\ g : ( M ... N ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` N ) = ( seq M ( .+ , g ) ` N ) ) ) |
| 114 | fvex | |- ( G ` x ) e. _V |
|
| 115 | eqid | |- ( x e. ( M ... N ) |-> ( G ` x ) ) = ( x e. ( M ... N ) |-> ( G ` x ) ) |
|
| 116 | 114 115 | fnmpti | |- ( x e. ( M ... N ) |-> ( G ` x ) ) Fn ( M ... N ) |
| 117 | fzfi | |- ( M ... N ) e. Fin |
|
| 118 | fnfi | |- ( ( ( x e. ( M ... N ) |-> ( G ` x ) ) Fn ( M ... N ) /\ ( M ... N ) e. Fin ) -> ( x e. ( M ... N ) |-> ( G ` x ) ) e. Fin ) |
|
| 119 | 116 117 118 | mp2an | |- ( x e. ( M ... N ) |-> ( G ` x ) ) e. Fin |
| 120 | f1of | |- ( F : ( M ... N ) -1-1-onto-> ( M ... N ) -> F : ( M ... N ) --> ( M ... N ) ) |
|
| 121 | 6 120 | syl | |- ( ph -> F : ( M ... N ) --> ( M ... N ) ) |
| 122 | ovexd | |- ( ph -> ( M ... N ) e. _V ) |
|
| 123 | fex2 | |- ( ( F : ( M ... N ) --> ( M ... N ) /\ ( M ... N ) e. _V /\ ( M ... N ) e. _V ) -> F e. _V ) |
|
| 124 | 121 122 122 123 | syl3anc | |- ( ph -> F e. _V ) |
| 125 | f1oeq1 | |- ( f = F -> ( f : ( M ... N ) -1-1-onto-> ( M ... N ) <-> F : ( M ... N ) -1-1-onto-> ( M ... N ) ) ) |
|
| 126 | feq1 | |- ( g = ( x e. ( M ... N ) |-> ( G ` x ) ) -> ( g : ( M ... N ) --> C <-> ( x e. ( M ... N ) |-> ( G ` x ) ) : ( M ... N ) --> C ) ) |
|
| 127 | 125 126 | bi2anan9r | |- ( ( g = ( x e. ( M ... N ) |-> ( G ` x ) ) /\ f = F ) -> ( ( f : ( M ... N ) -1-1-onto-> ( M ... N ) /\ g : ( M ... N ) --> C ) <-> ( F : ( M ... N ) -1-1-onto-> ( M ... N ) /\ ( x e. ( M ... N ) |-> ( G ` x ) ) : ( M ... N ) --> C ) ) ) |
| 128 | coeq1 | |- ( g = ( x e. ( M ... N ) |-> ( G ` x ) ) -> ( g o. f ) = ( ( x e. ( M ... N ) |-> ( G ` x ) ) o. f ) ) |
|
| 129 | coeq2 | |- ( f = F -> ( ( x e. ( M ... N ) |-> ( G ` x ) ) o. f ) = ( ( x e. ( M ... N ) |-> ( G ` x ) ) o. F ) ) |
|
| 130 | 128 129 | sylan9eq | |- ( ( g = ( x e. ( M ... N ) |-> ( G ` x ) ) /\ f = F ) -> ( g o. f ) = ( ( x e. ( M ... N ) |-> ( G ` x ) ) o. F ) ) |
| 131 | 130 | seqeq3d | |- ( ( g = ( x e. ( M ... N ) |-> ( G ` x ) ) /\ f = F ) -> seq M ( .+ , ( g o. f ) ) = seq M ( .+ , ( ( x e. ( M ... N ) |-> ( G ` x ) ) o. F ) ) ) |
| 132 | 131 | fveq1d | |- ( ( g = ( x e. ( M ... N ) |-> ( G ` x ) ) /\ f = F ) -> ( seq M ( .+ , ( g o. f ) ) ` N ) = ( seq M ( .+ , ( ( x e. ( M ... N ) |-> ( G ` x ) ) o. F ) ) ` N ) ) |
| 133 | simpl | |- ( ( g = ( x e. ( M ... N ) |-> ( G ` x ) ) /\ f = F ) -> g = ( x e. ( M ... N ) |-> ( G ` x ) ) ) |
|
| 134 | 133 | seqeq3d | |- ( ( g = ( x e. ( M ... N ) |-> ( G ` x ) ) /\ f = F ) -> seq M ( .+ , g ) = seq M ( .+ , ( x e. ( M ... N ) |-> ( G ` x ) ) ) ) |
| 135 | 134 | fveq1d | |- ( ( g = ( x e. ( M ... N ) |-> ( G ` x ) ) /\ f = F ) -> ( seq M ( .+ , g ) ` N ) = ( seq M ( .+ , ( x e. ( M ... N ) |-> ( G ` x ) ) ) ` N ) ) |
| 136 | 132 135 | eqeq12d | |- ( ( g = ( x e. ( M ... N ) |-> ( G ` x ) ) /\ f = F ) -> ( ( seq M ( .+ , ( g o. f ) ) ` N ) = ( seq M ( .+ , g ) ` N ) <-> ( seq M ( .+ , ( ( x e. ( M ... N ) |-> ( G ` x ) ) o. F ) ) ` N ) = ( seq M ( .+ , ( x e. ( M ... N ) |-> ( G ` x ) ) ) ` N ) ) ) |
| 137 | 127 136 | imbi12d | |- ( ( g = ( x e. ( M ... N ) |-> ( G ` x ) ) /\ f = F ) -> ( ( ( f : ( M ... N ) -1-1-onto-> ( M ... N ) /\ g : ( M ... N ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` N ) = ( seq M ( .+ , g ) ` N ) ) <-> ( ( F : ( M ... N ) -1-1-onto-> ( M ... N ) /\ ( x e. ( M ... N ) |-> ( G ` x ) ) : ( M ... N ) --> C ) -> ( seq M ( .+ , ( ( x e. ( M ... N ) |-> ( G ` x ) ) o. F ) ) ` N ) = ( seq M ( .+ , ( x e. ( M ... N ) |-> ( G ` x ) ) ) ` N ) ) ) ) |
| 138 | 137 | spc2gv | |- ( ( ( x e. ( M ... N ) |-> ( G ` x ) ) e. Fin /\ F e. _V ) -> ( A. g A. f ( ( f : ( M ... N ) -1-1-onto-> ( M ... N ) /\ g : ( M ... N ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` N ) = ( seq M ( .+ , g ) ` N ) ) -> ( ( F : ( M ... N ) -1-1-onto-> ( M ... N ) /\ ( x e. ( M ... N ) |-> ( G ` x ) ) : ( M ... N ) --> C ) -> ( seq M ( .+ , ( ( x e. ( M ... N ) |-> ( G ` x ) ) o. F ) ) ` N ) = ( seq M ( .+ , ( x e. ( M ... N ) |-> ( G ` x ) ) ) ` N ) ) ) ) |
| 139 | 119 124 138 | sylancr | |- ( ph -> ( A. g A. f ( ( f : ( M ... N ) -1-1-onto-> ( M ... N ) /\ g : ( M ... N ) --> C ) -> ( seq M ( .+ , ( g o. f ) ) ` N ) = ( seq M ( .+ , g ) ` N ) ) -> ( ( F : ( M ... N ) -1-1-onto-> ( M ... N ) /\ ( x e. ( M ... N ) |-> ( G ` x ) ) : ( M ... N ) --> C ) -> ( seq M ( .+ , ( ( x e. ( M ... N ) |-> ( G ` x ) ) o. F ) ) ` N ) = ( seq M ( .+ , ( x e. ( M ... N ) |-> ( G ` x ) ) ) ` N ) ) ) ) |
| 140 | 113 139 | mpd | |- ( ph -> ( ( F : ( M ... N ) -1-1-onto-> ( M ... N ) /\ ( x e. ( M ... N ) |-> ( G ` x ) ) : ( M ... N ) --> C ) -> ( seq M ( .+ , ( ( x e. ( M ... N ) |-> ( G ` x ) ) o. F ) ) ` N ) = ( seq M ( .+ , ( x e. ( M ... N ) |-> ( G ` x ) ) ) ` N ) ) ) |
| 141 | 6 9 140 | mp2and | |- ( ph -> ( seq M ( .+ , ( ( x e. ( M ... N ) |-> ( G ` x ) ) o. F ) ) ` N ) = ( seq M ( .+ , ( x e. ( M ... N ) |-> ( G ` x ) ) ) ` N ) ) |
| 142 | 121 | ffvelcdmda | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. ( M ... N ) ) |
| 143 | fveq2 | |- ( x = ( F ` k ) -> ( G ` x ) = ( G ` ( F ` k ) ) ) |
|
| 144 | fvex | |- ( G ` ( F ` k ) ) e. _V |
|
| 145 | 143 115 144 | fvmpt | |- ( ( F ` k ) e. ( M ... N ) -> ( ( x e. ( M ... N ) |-> ( G ` x ) ) ` ( F ` k ) ) = ( G ` ( F ` k ) ) ) |
| 146 | 142 145 | syl | |- ( ( ph /\ k e. ( M ... N ) ) -> ( ( x e. ( M ... N ) |-> ( G ` x ) ) ` ( F ` k ) ) = ( G ` ( F ` k ) ) ) |
| 147 | fvco3 | |- ( ( F : ( M ... N ) --> ( M ... N ) /\ k e. ( M ... N ) ) -> ( ( ( x e. ( M ... N ) |-> ( G ` x ) ) o. F ) ` k ) = ( ( x e. ( M ... N ) |-> ( G ` x ) ) ` ( F ` k ) ) ) |
|
| 148 | 121 147 | sylan | |- ( ( ph /\ k e. ( M ... N ) ) -> ( ( ( x e. ( M ... N ) |-> ( G ` x ) ) o. F ) ` k ) = ( ( x e. ( M ... N ) |-> ( G ` x ) ) ` ( F ` k ) ) ) |
| 149 | 146 148 8 | 3eqtr4d | |- ( ( ph /\ k e. ( M ... N ) ) -> ( ( ( x e. ( M ... N ) |-> ( G ` x ) ) o. F ) ` k ) = ( H ` k ) ) |
| 150 | 4 149 | seqfveq | |- ( ph -> ( seq M ( .+ , ( ( x e. ( M ... N ) |-> ( G ` x ) ) o. F ) ) ` N ) = ( seq M ( .+ , H ) ` N ) ) |
| 151 | fveq2 | |- ( x = k -> ( G ` x ) = ( G ` k ) ) |
|
| 152 | fvex | |- ( G ` k ) e. _V |
|
| 153 | 151 115 152 | fvmpt | |- ( k e. ( M ... N ) -> ( ( x e. ( M ... N ) |-> ( G ` x ) ) ` k ) = ( G ` k ) ) |
| 154 | 153 | adantl | |- ( ( ph /\ k e. ( M ... N ) ) -> ( ( x e. ( M ... N ) |-> ( G ` x ) ) ` k ) = ( G ` k ) ) |
| 155 | 4 154 | seqfveq | |- ( ph -> ( seq M ( .+ , ( x e. ( M ... N ) |-> ( G ` x ) ) ) ` N ) = ( seq M ( .+ , G ) ` N ) ) |
| 156 | 141 150 155 | 3eqtr3d | |- ( ph -> ( seq M ( .+ , H ) ` N ) = ( seq M ( .+ , G ) ` N ) ) |