This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | seqm1 | |- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq M ( .+ , F ) ` N ) = ( ( seq M ( .+ , F ) ` ( N - 1 ) ) .+ ( F ` N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzp1m1 | |- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` M ) ) |
|
| 2 | seqp1 | |- ( ( N - 1 ) e. ( ZZ>= ` M ) -> ( seq M ( .+ , F ) ` ( ( N - 1 ) + 1 ) ) = ( ( seq M ( .+ , F ) ` ( N - 1 ) ) .+ ( F ` ( ( N - 1 ) + 1 ) ) ) ) |
|
| 3 | 1 2 | syl | |- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq M ( .+ , F ) ` ( ( N - 1 ) + 1 ) ) = ( ( seq M ( .+ , F ) ` ( N - 1 ) ) .+ ( F ` ( ( N - 1 ) + 1 ) ) ) ) |
| 4 | eluzelcn | |- ( N e. ( ZZ>= ` ( M + 1 ) ) -> N e. CC ) |
|
| 5 | ax-1cn | |- 1 e. CC |
|
| 6 | npcan | |- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
|
| 7 | 4 5 6 | sylancl | |- ( N e. ( ZZ>= ` ( M + 1 ) ) -> ( ( N - 1 ) + 1 ) = N ) |
| 8 | 7 | adantl | |- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( N - 1 ) + 1 ) = N ) |
| 9 | 8 | fveq2d | |- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq M ( .+ , F ) ` ( ( N - 1 ) + 1 ) ) = ( seq M ( .+ , F ) ` N ) ) |
| 10 | 8 | fveq2d | |- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( F ` ( ( N - 1 ) + 1 ) ) = ( F ` N ) ) |
| 11 | 10 | oveq2d | |- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( seq M ( .+ , F ) ` ( N - 1 ) ) .+ ( F ` ( ( N - 1 ) + 1 ) ) ) = ( ( seq M ( .+ , F ) ` ( N - 1 ) ) .+ ( F ` N ) ) ) |
| 12 | 3 9 11 | 3eqtr3d | |- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq M ( .+ , F ) ` N ) = ( ( seq M ( .+ , F ) ` ( N - 1 ) ) .+ ( F ` N ) ) ) |