This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Append an element to a finite set of sequential integers. (Contributed by NM, 19-Sep-2005) (Proof shortened by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfzp1 | |- ( N e. ( ZZ>= ` M ) -> ( K e. ( M ... ( N + 1 ) ) <-> ( K e. ( M ... N ) \/ K = ( N + 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzsuc | |- ( N e. ( ZZ>= ` M ) -> ( M ... ( N + 1 ) ) = ( ( M ... N ) u. { ( N + 1 ) } ) ) |
|
| 2 | 1 | eleq2d | |- ( N e. ( ZZ>= ` M ) -> ( K e. ( M ... ( N + 1 ) ) <-> K e. ( ( M ... N ) u. { ( N + 1 ) } ) ) ) |
| 3 | elun | |- ( K e. ( ( M ... N ) u. { ( N + 1 ) } ) <-> ( K e. ( M ... N ) \/ K e. { ( N + 1 ) } ) ) |
|
| 4 | ovex | |- ( N + 1 ) e. _V |
|
| 5 | 4 | elsn2 | |- ( K e. { ( N + 1 ) } <-> K = ( N + 1 ) ) |
| 6 | 5 | orbi2i | |- ( ( K e. ( M ... N ) \/ K e. { ( N + 1 ) } ) <-> ( K e. ( M ... N ) \/ K = ( N + 1 ) ) ) |
| 7 | 3 6 | bitri | |- ( K e. ( ( M ... N ) u. { ( N + 1 ) } ) <-> ( K e. ( M ... N ) \/ K = ( N + 1 ) ) ) |
| 8 | 2 7 | bitrdi | |- ( N e. ( ZZ>= ` M ) -> ( K e. ( M ... ( N + 1 ) ) <-> ( K e. ( M ... N ) \/ K = ( N + 1 ) ) ) ) |