This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for seqf1o . (Contributed by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqf1o.1 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
|
| seqf1o.2 | |- ( ( ph /\ ( x e. C /\ y e. C ) ) -> ( x .+ y ) = ( y .+ x ) ) |
||
| seqf1o.3 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
||
| seqf1o.4 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
||
| seqf1o.5 | |- ( ph -> C C_ S ) |
||
| seqf1olem2a.1 | |- ( ph -> G : A --> C ) |
||
| seqf1olem2a.3 | |- ( ph -> K e. A ) |
||
| seqf1olem2a.4 | |- ( ph -> ( M ... N ) C_ A ) |
||
| Assertion | seqf1olem2a | |- ( ph -> ( ( G ` K ) .+ ( seq M ( .+ , G ) ` N ) ) = ( ( seq M ( .+ , G ) ` N ) .+ ( G ` K ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqf1o.1 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
|
| 2 | seqf1o.2 | |- ( ( ph /\ ( x e. C /\ y e. C ) ) -> ( x .+ y ) = ( y .+ x ) ) |
|
| 3 | seqf1o.3 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
|
| 4 | seqf1o.4 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 5 | seqf1o.5 | |- ( ph -> C C_ S ) |
|
| 6 | seqf1olem2a.1 | |- ( ph -> G : A --> C ) |
|
| 7 | seqf1olem2a.3 | |- ( ph -> K e. A ) |
|
| 8 | seqf1olem2a.4 | |- ( ph -> ( M ... N ) C_ A ) |
|
| 9 | eluzfz2 | |- ( N e. ( ZZ>= ` M ) -> N e. ( M ... N ) ) |
|
| 10 | 4 9 | syl | |- ( ph -> N e. ( M ... N ) ) |
| 11 | fveq2 | |- ( m = M -> ( seq M ( .+ , G ) ` m ) = ( seq M ( .+ , G ) ` M ) ) |
|
| 12 | 11 | oveq2d | |- ( m = M -> ( ( G ` K ) .+ ( seq M ( .+ , G ) ` m ) ) = ( ( G ` K ) .+ ( seq M ( .+ , G ) ` M ) ) ) |
| 13 | 11 | oveq1d | |- ( m = M -> ( ( seq M ( .+ , G ) ` m ) .+ ( G ` K ) ) = ( ( seq M ( .+ , G ) ` M ) .+ ( G ` K ) ) ) |
| 14 | 12 13 | eqeq12d | |- ( m = M -> ( ( ( G ` K ) .+ ( seq M ( .+ , G ) ` m ) ) = ( ( seq M ( .+ , G ) ` m ) .+ ( G ` K ) ) <-> ( ( G ` K ) .+ ( seq M ( .+ , G ) ` M ) ) = ( ( seq M ( .+ , G ) ` M ) .+ ( G ` K ) ) ) ) |
| 15 | 14 | imbi2d | |- ( m = M -> ( ( ph -> ( ( G ` K ) .+ ( seq M ( .+ , G ) ` m ) ) = ( ( seq M ( .+ , G ) ` m ) .+ ( G ` K ) ) ) <-> ( ph -> ( ( G ` K ) .+ ( seq M ( .+ , G ) ` M ) ) = ( ( seq M ( .+ , G ) ` M ) .+ ( G ` K ) ) ) ) ) |
| 16 | fveq2 | |- ( m = n -> ( seq M ( .+ , G ) ` m ) = ( seq M ( .+ , G ) ` n ) ) |
|
| 17 | 16 | oveq2d | |- ( m = n -> ( ( G ` K ) .+ ( seq M ( .+ , G ) ` m ) ) = ( ( G ` K ) .+ ( seq M ( .+ , G ) ` n ) ) ) |
| 18 | 16 | oveq1d | |- ( m = n -> ( ( seq M ( .+ , G ) ` m ) .+ ( G ` K ) ) = ( ( seq M ( .+ , G ) ` n ) .+ ( G ` K ) ) ) |
| 19 | 17 18 | eqeq12d | |- ( m = n -> ( ( ( G ` K ) .+ ( seq M ( .+ , G ) ` m ) ) = ( ( seq M ( .+ , G ) ` m ) .+ ( G ` K ) ) <-> ( ( G ` K ) .+ ( seq M ( .+ , G ) ` n ) ) = ( ( seq M ( .+ , G ) ` n ) .+ ( G ` K ) ) ) ) |
| 20 | 19 | imbi2d | |- ( m = n -> ( ( ph -> ( ( G ` K ) .+ ( seq M ( .+ , G ) ` m ) ) = ( ( seq M ( .+ , G ) ` m ) .+ ( G ` K ) ) ) <-> ( ph -> ( ( G ` K ) .+ ( seq M ( .+ , G ) ` n ) ) = ( ( seq M ( .+ , G ) ` n ) .+ ( G ` K ) ) ) ) ) |
| 21 | fveq2 | |- ( m = ( n + 1 ) -> ( seq M ( .+ , G ) ` m ) = ( seq M ( .+ , G ) ` ( n + 1 ) ) ) |
|
| 22 | 21 | oveq2d | |- ( m = ( n + 1 ) -> ( ( G ` K ) .+ ( seq M ( .+ , G ) ` m ) ) = ( ( G ` K ) .+ ( seq M ( .+ , G ) ` ( n + 1 ) ) ) ) |
| 23 | 21 | oveq1d | |- ( m = ( n + 1 ) -> ( ( seq M ( .+ , G ) ` m ) .+ ( G ` K ) ) = ( ( seq M ( .+ , G ) ` ( n + 1 ) ) .+ ( G ` K ) ) ) |
| 24 | 22 23 | eqeq12d | |- ( m = ( n + 1 ) -> ( ( ( G ` K ) .+ ( seq M ( .+ , G ) ` m ) ) = ( ( seq M ( .+ , G ) ` m ) .+ ( G ` K ) ) <-> ( ( G ` K ) .+ ( seq M ( .+ , G ) ` ( n + 1 ) ) ) = ( ( seq M ( .+ , G ) ` ( n + 1 ) ) .+ ( G ` K ) ) ) ) |
| 25 | 24 | imbi2d | |- ( m = ( n + 1 ) -> ( ( ph -> ( ( G ` K ) .+ ( seq M ( .+ , G ) ` m ) ) = ( ( seq M ( .+ , G ) ` m ) .+ ( G ` K ) ) ) <-> ( ph -> ( ( G ` K ) .+ ( seq M ( .+ , G ) ` ( n + 1 ) ) ) = ( ( seq M ( .+ , G ) ` ( n + 1 ) ) .+ ( G ` K ) ) ) ) ) |
| 26 | fveq2 | |- ( m = N -> ( seq M ( .+ , G ) ` m ) = ( seq M ( .+ , G ) ` N ) ) |
|
| 27 | 26 | oveq2d | |- ( m = N -> ( ( G ` K ) .+ ( seq M ( .+ , G ) ` m ) ) = ( ( G ` K ) .+ ( seq M ( .+ , G ) ` N ) ) ) |
| 28 | 26 | oveq1d | |- ( m = N -> ( ( seq M ( .+ , G ) ` m ) .+ ( G ` K ) ) = ( ( seq M ( .+ , G ) ` N ) .+ ( G ` K ) ) ) |
| 29 | 27 28 | eqeq12d | |- ( m = N -> ( ( ( G ` K ) .+ ( seq M ( .+ , G ) ` m ) ) = ( ( seq M ( .+ , G ) ` m ) .+ ( G ` K ) ) <-> ( ( G ` K ) .+ ( seq M ( .+ , G ) ` N ) ) = ( ( seq M ( .+ , G ) ` N ) .+ ( G ` K ) ) ) ) |
| 30 | 29 | imbi2d | |- ( m = N -> ( ( ph -> ( ( G ` K ) .+ ( seq M ( .+ , G ) ` m ) ) = ( ( seq M ( .+ , G ) ` m ) .+ ( G ` K ) ) ) <-> ( ph -> ( ( G ` K ) .+ ( seq M ( .+ , G ) ` N ) ) = ( ( seq M ( .+ , G ) ` N ) .+ ( G ` K ) ) ) ) ) |
| 31 | 6 7 | ffvelcdmd | |- ( ph -> ( G ` K ) e. C ) |
| 32 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 33 | seq1 | |- ( M e. ZZ -> ( seq M ( .+ , G ) ` M ) = ( G ` M ) ) |
|
| 34 | 4 32 33 | 3syl | |- ( ph -> ( seq M ( .+ , G ) ` M ) = ( G ` M ) ) |
| 35 | eluzfz1 | |- ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) ) |
|
| 36 | 4 35 | syl | |- ( ph -> M e. ( M ... N ) ) |
| 37 | 8 36 | sseldd | |- ( ph -> M e. A ) |
| 38 | 6 37 | ffvelcdmd | |- ( ph -> ( G ` M ) e. C ) |
| 39 | 34 38 | eqeltrd | |- ( ph -> ( seq M ( .+ , G ) ` M ) e. C ) |
| 40 | 2 31 39 | caovcomd | |- ( ph -> ( ( G ` K ) .+ ( seq M ( .+ , G ) ` M ) ) = ( ( seq M ( .+ , G ) ` M ) .+ ( G ` K ) ) ) |
| 41 | 40 | a1i | |- ( N e. ( ZZ>= ` M ) -> ( ph -> ( ( G ` K ) .+ ( seq M ( .+ , G ) ` M ) ) = ( ( seq M ( .+ , G ) ` M ) .+ ( G ` K ) ) ) ) |
| 42 | oveq1 | |- ( ( ( G ` K ) .+ ( seq M ( .+ , G ) ` n ) ) = ( ( seq M ( .+ , G ) ` n ) .+ ( G ` K ) ) -> ( ( ( G ` K ) .+ ( seq M ( .+ , G ) ` n ) ) .+ ( G ` ( n + 1 ) ) ) = ( ( ( seq M ( .+ , G ) ` n ) .+ ( G ` K ) ) .+ ( G ` ( n + 1 ) ) ) ) |
|
| 43 | elfzouz | |- ( n e. ( M ..^ N ) -> n e. ( ZZ>= ` M ) ) |
|
| 44 | 43 | adantl | |- ( ( ph /\ n e. ( M ..^ N ) ) -> n e. ( ZZ>= ` M ) ) |
| 45 | seqp1 | |- ( n e. ( ZZ>= ` M ) -> ( seq M ( .+ , G ) ` ( n + 1 ) ) = ( ( seq M ( .+ , G ) ` n ) .+ ( G ` ( n + 1 ) ) ) ) |
|
| 46 | 44 45 | syl | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( seq M ( .+ , G ) ` ( n + 1 ) ) = ( ( seq M ( .+ , G ) ` n ) .+ ( G ` ( n + 1 ) ) ) ) |
| 47 | 46 | oveq2d | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( ( G ` K ) .+ ( seq M ( .+ , G ) ` ( n + 1 ) ) ) = ( ( G ` K ) .+ ( ( seq M ( .+ , G ) ` n ) .+ ( G ` ( n + 1 ) ) ) ) ) |
| 48 | 3 | adantlr | |- ( ( ( ph /\ n e. ( M ..^ N ) ) /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
| 49 | 5 31 | sseldd | |- ( ph -> ( G ` K ) e. S ) |
| 50 | 49 | adantr | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( G ` K ) e. S ) |
| 51 | 5 | adantr | |- ( ( ph /\ n e. ( M ..^ N ) ) -> C C_ S ) |
| 52 | 51 | adantr | |- ( ( ( ph /\ n e. ( M ..^ N ) ) /\ x e. ( M ... n ) ) -> C C_ S ) |
| 53 | 6 | adantr | |- ( ( ph /\ n e. ( M ..^ N ) ) -> G : A --> C ) |
| 54 | 53 | adantr | |- ( ( ( ph /\ n e. ( M ..^ N ) ) /\ x e. ( M ... n ) ) -> G : A --> C ) |
| 55 | elfzouz2 | |- ( n e. ( M ..^ N ) -> N e. ( ZZ>= ` n ) ) |
|
| 56 | 55 | adantl | |- ( ( ph /\ n e. ( M ..^ N ) ) -> N e. ( ZZ>= ` n ) ) |
| 57 | fzss2 | |- ( N e. ( ZZ>= ` n ) -> ( M ... n ) C_ ( M ... N ) ) |
|
| 58 | 56 57 | syl | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( M ... n ) C_ ( M ... N ) ) |
| 59 | 8 | adantr | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( M ... N ) C_ A ) |
| 60 | 58 59 | sstrd | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( M ... n ) C_ A ) |
| 61 | 60 | sselda | |- ( ( ( ph /\ n e. ( M ..^ N ) ) /\ x e. ( M ... n ) ) -> x e. A ) |
| 62 | 54 61 | ffvelcdmd | |- ( ( ( ph /\ n e. ( M ..^ N ) ) /\ x e. ( M ... n ) ) -> ( G ` x ) e. C ) |
| 63 | 52 62 | sseldd | |- ( ( ( ph /\ n e. ( M ..^ N ) ) /\ x e. ( M ... n ) ) -> ( G ` x ) e. S ) |
| 64 | 1 | adantlr | |- ( ( ( ph /\ n e. ( M ..^ N ) ) /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
| 65 | 44 63 64 | seqcl | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( seq M ( .+ , G ) ` n ) e. S ) |
| 66 | fzofzp1 | |- ( n e. ( M ..^ N ) -> ( n + 1 ) e. ( M ... N ) ) |
|
| 67 | 66 | adantl | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( n + 1 ) e. ( M ... N ) ) |
| 68 | 59 67 | sseldd | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( n + 1 ) e. A ) |
| 69 | 53 68 | ffvelcdmd | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( G ` ( n + 1 ) ) e. C ) |
| 70 | 51 69 | sseldd | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( G ` ( n + 1 ) ) e. S ) |
| 71 | 48 50 65 70 | caovassd | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( ( ( G ` K ) .+ ( seq M ( .+ , G ) ` n ) ) .+ ( G ` ( n + 1 ) ) ) = ( ( G ` K ) .+ ( ( seq M ( .+ , G ) ` n ) .+ ( G ` ( n + 1 ) ) ) ) ) |
| 72 | 47 71 | eqtr4d | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( ( G ` K ) .+ ( seq M ( .+ , G ) ` ( n + 1 ) ) ) = ( ( ( G ` K ) .+ ( seq M ( .+ , G ) ` n ) ) .+ ( G ` ( n + 1 ) ) ) ) |
| 73 | 48 65 70 50 | caovassd | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( ( ( seq M ( .+ , G ) ` n ) .+ ( G ` ( n + 1 ) ) ) .+ ( G ` K ) ) = ( ( seq M ( .+ , G ) ` n ) .+ ( ( G ` ( n + 1 ) ) .+ ( G ` K ) ) ) ) |
| 74 | 46 | oveq1d | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( ( seq M ( .+ , G ) ` ( n + 1 ) ) .+ ( G ` K ) ) = ( ( ( seq M ( .+ , G ) ` n ) .+ ( G ` ( n + 1 ) ) ) .+ ( G ` K ) ) ) |
| 75 | 48 65 50 70 | caovassd | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( ( ( seq M ( .+ , G ) ` n ) .+ ( G ` K ) ) .+ ( G ` ( n + 1 ) ) ) = ( ( seq M ( .+ , G ) ` n ) .+ ( ( G ` K ) .+ ( G ` ( n + 1 ) ) ) ) ) |
| 76 | 2 | adantlr | |- ( ( ( ph /\ n e. ( M ..^ N ) ) /\ ( x e. C /\ y e. C ) ) -> ( x .+ y ) = ( y .+ x ) ) |
| 77 | 31 | adantr | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( G ` K ) e. C ) |
| 78 | 76 69 77 | caovcomd | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( ( G ` ( n + 1 ) ) .+ ( G ` K ) ) = ( ( G ` K ) .+ ( G ` ( n + 1 ) ) ) ) |
| 79 | 78 | oveq2d | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( ( seq M ( .+ , G ) ` n ) .+ ( ( G ` ( n + 1 ) ) .+ ( G ` K ) ) ) = ( ( seq M ( .+ , G ) ` n ) .+ ( ( G ` K ) .+ ( G ` ( n + 1 ) ) ) ) ) |
| 80 | 75 79 | eqtr4d | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( ( ( seq M ( .+ , G ) ` n ) .+ ( G ` K ) ) .+ ( G ` ( n + 1 ) ) ) = ( ( seq M ( .+ , G ) ` n ) .+ ( ( G ` ( n + 1 ) ) .+ ( G ` K ) ) ) ) |
| 81 | 73 74 80 | 3eqtr4d | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( ( seq M ( .+ , G ) ` ( n + 1 ) ) .+ ( G ` K ) ) = ( ( ( seq M ( .+ , G ) ` n ) .+ ( G ` K ) ) .+ ( G ` ( n + 1 ) ) ) ) |
| 82 | 72 81 | eqeq12d | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( ( ( G ` K ) .+ ( seq M ( .+ , G ) ` ( n + 1 ) ) ) = ( ( seq M ( .+ , G ) ` ( n + 1 ) ) .+ ( G ` K ) ) <-> ( ( ( G ` K ) .+ ( seq M ( .+ , G ) ` n ) ) .+ ( G ` ( n + 1 ) ) ) = ( ( ( seq M ( .+ , G ) ` n ) .+ ( G ` K ) ) .+ ( G ` ( n + 1 ) ) ) ) ) |
| 83 | 42 82 | imbitrrid | |- ( ( ph /\ n e. ( M ..^ N ) ) -> ( ( ( G ` K ) .+ ( seq M ( .+ , G ) ` n ) ) = ( ( seq M ( .+ , G ) ` n ) .+ ( G ` K ) ) -> ( ( G ` K ) .+ ( seq M ( .+ , G ) ` ( n + 1 ) ) ) = ( ( seq M ( .+ , G ) ` ( n + 1 ) ) .+ ( G ` K ) ) ) ) |
| 84 | 83 | expcom | |- ( n e. ( M ..^ N ) -> ( ph -> ( ( ( G ` K ) .+ ( seq M ( .+ , G ) ` n ) ) = ( ( seq M ( .+ , G ) ` n ) .+ ( G ` K ) ) -> ( ( G ` K ) .+ ( seq M ( .+ , G ) ` ( n + 1 ) ) ) = ( ( seq M ( .+ , G ) ` ( n + 1 ) ) .+ ( G ` K ) ) ) ) ) |
| 85 | 84 | a2d | |- ( n e. ( M ..^ N ) -> ( ( ph -> ( ( G ` K ) .+ ( seq M ( .+ , G ) ` n ) ) = ( ( seq M ( .+ , G ) ` n ) .+ ( G ` K ) ) ) -> ( ph -> ( ( G ` K ) .+ ( seq M ( .+ , G ) ` ( n + 1 ) ) ) = ( ( seq M ( .+ , G ) ` ( n + 1 ) ) .+ ( G ` K ) ) ) ) ) |
| 86 | 15 20 25 30 41 85 | fzind2 | |- ( N e. ( M ... N ) -> ( ph -> ( ( G ` K ) .+ ( seq M ( .+ , G ) ` N ) ) = ( ( seq M ( .+ , G ) ` N ) .+ ( G ` K ) ) ) ) |
| 87 | 10 86 | mpcom | |- ( ph -> ( ( G ` K ) .+ ( seq M ( .+ , G ) ` N ) ) = ( ( seq M ( .+ , G ) ` N ) .+ ( G ` K ) ) ) |