This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Options for membership in a finite interval of integers. (Contributed by Jeff Madsen, 18-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfzp12 | |- ( N e. ( ZZ>= ` M ) -> ( K e. ( M ... N ) <-> ( K = M \/ K e. ( ( M + 1 ) ... N ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | |- ( K e. ( M ... N ) -> K e. _V ) |
|
| 2 | 1 | anim2i | |- ( ( N e. ( ZZ>= ` M ) /\ K e. ( M ... N ) ) -> ( N e. ( ZZ>= ` M ) /\ K e. _V ) ) |
| 3 | elfvex | |- ( N e. ( ZZ>= ` M ) -> M e. _V ) |
|
| 4 | eleq1 | |- ( K = M -> ( K e. _V <-> M e. _V ) ) |
|
| 5 | 3 4 | syl5ibrcom | |- ( N e. ( ZZ>= ` M ) -> ( K = M -> K e. _V ) ) |
| 6 | 5 | imdistani | |- ( ( N e. ( ZZ>= ` M ) /\ K = M ) -> ( N e. ( ZZ>= ` M ) /\ K e. _V ) ) |
| 7 | elex | |- ( K e. ( ( M + 1 ) ... N ) -> K e. _V ) |
|
| 8 | 7 | anim2i | |- ( ( N e. ( ZZ>= ` M ) /\ K e. ( ( M + 1 ) ... N ) ) -> ( N e. ( ZZ>= ` M ) /\ K e. _V ) ) |
| 9 | 6 8 | jaodan | |- ( ( N e. ( ZZ>= ` M ) /\ ( K = M \/ K e. ( ( M + 1 ) ... N ) ) ) -> ( N e. ( ZZ>= ` M ) /\ K e. _V ) ) |
| 10 | fzpred | |- ( N e. ( ZZ>= ` M ) -> ( M ... N ) = ( { M } u. ( ( M + 1 ) ... N ) ) ) |
|
| 11 | 10 | eleq2d | |- ( N e. ( ZZ>= ` M ) -> ( K e. ( M ... N ) <-> K e. ( { M } u. ( ( M + 1 ) ... N ) ) ) ) |
| 12 | elun | |- ( K e. ( { M } u. ( ( M + 1 ) ... N ) ) <-> ( K e. { M } \/ K e. ( ( M + 1 ) ... N ) ) ) |
|
| 13 | 11 12 | bitrdi | |- ( N e. ( ZZ>= ` M ) -> ( K e. ( M ... N ) <-> ( K e. { M } \/ K e. ( ( M + 1 ) ... N ) ) ) ) |
| 14 | elsng | |- ( K e. _V -> ( K e. { M } <-> K = M ) ) |
|
| 15 | 14 | orbi1d | |- ( K e. _V -> ( ( K e. { M } \/ K e. ( ( M + 1 ) ... N ) ) <-> ( K = M \/ K e. ( ( M + 1 ) ... N ) ) ) ) |
| 16 | 13 15 | sylan9bb | |- ( ( N e. ( ZZ>= ` M ) /\ K e. _V ) -> ( K e. ( M ... N ) <-> ( K = M \/ K e. ( ( M + 1 ) ... N ) ) ) ) |
| 17 | 2 9 16 | pm5.21nd | |- ( N e. ( ZZ>= ` M ) -> ( K e. ( M ... N ) <-> ( K = M \/ K e. ( ( M + 1 ) ... N ) ) ) ) |