This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function with bounded domain and codomain is a set. This version of fex is proven without the Axiom of Replacement ax-rep , but depends on ax-un , which is not required for the proof of fex . (Contributed by Mario Carneiro, 24-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fex2 | |- ( ( F : A --> B /\ A e. V /\ B e. W ) -> F e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpexg | |- ( ( A e. V /\ B e. W ) -> ( A X. B ) e. _V ) |
|
| 2 | 1 | 3adant1 | |- ( ( F : A --> B /\ A e. V /\ B e. W ) -> ( A X. B ) e. _V ) |
| 3 | fssxp | |- ( F : A --> B -> F C_ ( A X. B ) ) |
|
| 4 | 3 | 3ad2ant1 | |- ( ( F : A --> B /\ A e. V /\ B e. W ) -> F C_ ( A X. B ) ) |
| 5 | 2 4 | ssexd | |- ( ( F : A --> B /\ A e. V /\ B e. W ) -> F e. _V ) |