This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split a sequence into two sequences. (Contributed by NM, 17-Mar-2005) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqsplit.1 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
|
| seqsplit.2 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
||
| seqsplit.3 | |- ( ph -> N e. ( ZZ>= ` ( M + 1 ) ) ) |
||
| seqsplit.4 | |- ( ph -> M e. ( ZZ>= ` K ) ) |
||
| seqsplit.5 | |- ( ( ph /\ x e. ( K ... N ) ) -> ( F ` x ) e. S ) |
||
| Assertion | seqsplit | |- ( ph -> ( seq K ( .+ , F ) ` N ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqsplit.1 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
|
| 2 | seqsplit.2 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
|
| 3 | seqsplit.3 | |- ( ph -> N e. ( ZZ>= ` ( M + 1 ) ) ) |
|
| 4 | seqsplit.4 | |- ( ph -> M e. ( ZZ>= ` K ) ) |
|
| 5 | seqsplit.5 | |- ( ( ph /\ x e. ( K ... N ) ) -> ( F ` x ) e. S ) |
|
| 6 | eluzfz2 | |- ( N e. ( ZZ>= ` ( M + 1 ) ) -> N e. ( ( M + 1 ) ... N ) ) |
|
| 7 | 3 6 | syl | |- ( ph -> N e. ( ( M + 1 ) ... N ) ) |
| 8 | eleq1 | |- ( x = ( M + 1 ) -> ( x e. ( ( M + 1 ) ... N ) <-> ( M + 1 ) e. ( ( M + 1 ) ... N ) ) ) |
|
| 9 | fveq2 | |- ( x = ( M + 1 ) -> ( seq K ( .+ , F ) ` x ) = ( seq K ( .+ , F ) ` ( M + 1 ) ) ) |
|
| 10 | fveq2 | |- ( x = ( M + 1 ) -> ( seq ( M + 1 ) ( .+ , F ) ` x ) = ( seq ( M + 1 ) ( .+ , F ) ` ( M + 1 ) ) ) |
|
| 11 | 10 | oveq2d | |- ( x = ( M + 1 ) -> ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` x ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` ( M + 1 ) ) ) ) |
| 12 | 9 11 | eqeq12d | |- ( x = ( M + 1 ) -> ( ( seq K ( .+ , F ) ` x ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` x ) ) <-> ( seq K ( .+ , F ) ` ( M + 1 ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` ( M + 1 ) ) ) ) ) |
| 13 | 8 12 | imbi12d | |- ( x = ( M + 1 ) -> ( ( x e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` x ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` x ) ) ) <-> ( ( M + 1 ) e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` ( M + 1 ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` ( M + 1 ) ) ) ) ) ) |
| 14 | 13 | imbi2d | |- ( x = ( M + 1 ) -> ( ( ph -> ( x e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` x ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` x ) ) ) ) <-> ( ph -> ( ( M + 1 ) e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` ( M + 1 ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` ( M + 1 ) ) ) ) ) ) ) |
| 15 | eleq1 | |- ( x = n -> ( x e. ( ( M + 1 ) ... N ) <-> n e. ( ( M + 1 ) ... N ) ) ) |
|
| 16 | fveq2 | |- ( x = n -> ( seq K ( .+ , F ) ` x ) = ( seq K ( .+ , F ) ` n ) ) |
|
| 17 | fveq2 | |- ( x = n -> ( seq ( M + 1 ) ( .+ , F ) ` x ) = ( seq ( M + 1 ) ( .+ , F ) ` n ) ) |
|
| 18 | 17 | oveq2d | |- ( x = n -> ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` x ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` n ) ) ) |
| 19 | 16 18 | eqeq12d | |- ( x = n -> ( ( seq K ( .+ , F ) ` x ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` x ) ) <-> ( seq K ( .+ , F ) ` n ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` n ) ) ) ) |
| 20 | 15 19 | imbi12d | |- ( x = n -> ( ( x e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` x ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` x ) ) ) <-> ( n e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` n ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` n ) ) ) ) ) |
| 21 | 20 | imbi2d | |- ( x = n -> ( ( ph -> ( x e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` x ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` x ) ) ) ) <-> ( ph -> ( n e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` n ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` n ) ) ) ) ) ) |
| 22 | eleq1 | |- ( x = ( n + 1 ) -> ( x e. ( ( M + 1 ) ... N ) <-> ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) |
|
| 23 | fveq2 | |- ( x = ( n + 1 ) -> ( seq K ( .+ , F ) ` x ) = ( seq K ( .+ , F ) ` ( n + 1 ) ) ) |
|
| 24 | fveq2 | |- ( x = ( n + 1 ) -> ( seq ( M + 1 ) ( .+ , F ) ` x ) = ( seq ( M + 1 ) ( .+ , F ) ` ( n + 1 ) ) ) |
|
| 25 | 24 | oveq2d | |- ( x = ( n + 1 ) -> ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` x ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` ( n + 1 ) ) ) ) |
| 26 | 23 25 | eqeq12d | |- ( x = ( n + 1 ) -> ( ( seq K ( .+ , F ) ` x ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` x ) ) <-> ( seq K ( .+ , F ) ` ( n + 1 ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` ( n + 1 ) ) ) ) ) |
| 27 | 22 26 | imbi12d | |- ( x = ( n + 1 ) -> ( ( x e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` x ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` x ) ) ) <-> ( ( n + 1 ) e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` ( n + 1 ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` ( n + 1 ) ) ) ) ) ) |
| 28 | 27 | imbi2d | |- ( x = ( n + 1 ) -> ( ( ph -> ( x e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` x ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` x ) ) ) ) <-> ( ph -> ( ( n + 1 ) e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` ( n + 1 ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` ( n + 1 ) ) ) ) ) ) ) |
| 29 | eleq1 | |- ( x = N -> ( x e. ( ( M + 1 ) ... N ) <-> N e. ( ( M + 1 ) ... N ) ) ) |
|
| 30 | fveq2 | |- ( x = N -> ( seq K ( .+ , F ) ` x ) = ( seq K ( .+ , F ) ` N ) ) |
|
| 31 | fveq2 | |- ( x = N -> ( seq ( M + 1 ) ( .+ , F ) ` x ) = ( seq ( M + 1 ) ( .+ , F ) ` N ) ) |
|
| 32 | 31 | oveq2d | |- ( x = N -> ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` x ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` N ) ) ) |
| 33 | 30 32 | eqeq12d | |- ( x = N -> ( ( seq K ( .+ , F ) ` x ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` x ) ) <-> ( seq K ( .+ , F ) ` N ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` N ) ) ) ) |
| 34 | 29 33 | imbi12d | |- ( x = N -> ( ( x e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` x ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` x ) ) ) <-> ( N e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` N ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` N ) ) ) ) ) |
| 35 | 34 | imbi2d | |- ( x = N -> ( ( ph -> ( x e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` x ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` x ) ) ) ) <-> ( ph -> ( N e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` N ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` N ) ) ) ) ) ) |
| 36 | seqp1 | |- ( M e. ( ZZ>= ` K ) -> ( seq K ( .+ , F ) ` ( M + 1 ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( F ` ( M + 1 ) ) ) ) |
|
| 37 | 4 36 | syl | |- ( ph -> ( seq K ( .+ , F ) ` ( M + 1 ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( F ` ( M + 1 ) ) ) ) |
| 38 | eluzel2 | |- ( N e. ( ZZ>= ` ( M + 1 ) ) -> ( M + 1 ) e. ZZ ) |
|
| 39 | seq1 | |- ( ( M + 1 ) e. ZZ -> ( seq ( M + 1 ) ( .+ , F ) ` ( M + 1 ) ) = ( F ` ( M + 1 ) ) ) |
|
| 40 | 3 38 39 | 3syl | |- ( ph -> ( seq ( M + 1 ) ( .+ , F ) ` ( M + 1 ) ) = ( F ` ( M + 1 ) ) ) |
| 41 | 40 | oveq2d | |- ( ph -> ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` ( M + 1 ) ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( F ` ( M + 1 ) ) ) ) |
| 42 | 37 41 | eqtr4d | |- ( ph -> ( seq K ( .+ , F ) ` ( M + 1 ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` ( M + 1 ) ) ) ) |
| 43 | 42 | a1i13 | |- ( ( M + 1 ) e. ZZ -> ( ph -> ( ( M + 1 ) e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` ( M + 1 ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` ( M + 1 ) ) ) ) ) ) |
| 44 | peano2fzr | |- ( ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) -> n e. ( ( M + 1 ) ... N ) ) |
|
| 45 | 44 | adantl | |- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> n e. ( ( M + 1 ) ... N ) ) |
| 46 | 45 | expr | |- ( ( ph /\ n e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( n + 1 ) e. ( ( M + 1 ) ... N ) -> n e. ( ( M + 1 ) ... N ) ) ) |
| 47 | 46 | imim1d | |- ( ( ph /\ n e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( n e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` n ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` n ) ) ) -> ( ( n + 1 ) e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` n ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` n ) ) ) ) ) |
| 48 | oveq1 | |- ( ( seq K ( .+ , F ) ` n ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` n ) ) -> ( ( seq K ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) = ( ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` n ) ) .+ ( F ` ( n + 1 ) ) ) ) |
|
| 49 | simprl | |- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> n e. ( ZZ>= ` ( M + 1 ) ) ) |
|
| 50 | peano2uz | |- ( M e. ( ZZ>= ` K ) -> ( M + 1 ) e. ( ZZ>= ` K ) ) |
|
| 51 | 4 50 | syl | |- ( ph -> ( M + 1 ) e. ( ZZ>= ` K ) ) |
| 52 | 51 | adantr | |- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( M + 1 ) e. ( ZZ>= ` K ) ) |
| 53 | uztrn | |- ( ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( M + 1 ) e. ( ZZ>= ` K ) ) -> n e. ( ZZ>= ` K ) ) |
|
| 54 | 49 52 53 | syl2anc | |- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> n e. ( ZZ>= ` K ) ) |
| 55 | seqp1 | |- ( n e. ( ZZ>= ` K ) -> ( seq K ( .+ , F ) ` ( n + 1 ) ) = ( ( seq K ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) |
|
| 56 | 54 55 | syl | |- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( seq K ( .+ , F ) ` ( n + 1 ) ) = ( ( seq K ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) |
| 57 | seqp1 | |- ( n e. ( ZZ>= ` ( M + 1 ) ) -> ( seq ( M + 1 ) ( .+ , F ) ` ( n + 1 ) ) = ( ( seq ( M + 1 ) ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) |
|
| 58 | 49 57 | syl | |- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( seq ( M + 1 ) ( .+ , F ) ` ( n + 1 ) ) = ( ( seq ( M + 1 ) ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) |
| 59 | 58 | oveq2d | |- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` ( n + 1 ) ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( ( seq ( M + 1 ) ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) ) |
| 60 | simpl | |- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ph ) |
|
| 61 | eluzelz | |- ( M e. ( ZZ>= ` K ) -> M e. ZZ ) |
|
| 62 | 4 61 | syl | |- ( ph -> M e. ZZ ) |
| 63 | peano2uzr | |- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> N e. ( ZZ>= ` M ) ) |
|
| 64 | 62 3 63 | syl2anc | |- ( ph -> N e. ( ZZ>= ` M ) ) |
| 65 | fzss2 | |- ( N e. ( ZZ>= ` M ) -> ( K ... M ) C_ ( K ... N ) ) |
|
| 66 | 64 65 | syl | |- ( ph -> ( K ... M ) C_ ( K ... N ) ) |
| 67 | 66 | sselda | |- ( ( ph /\ x e. ( K ... M ) ) -> x e. ( K ... N ) ) |
| 68 | 67 5 | syldan | |- ( ( ph /\ x e. ( K ... M ) ) -> ( F ` x ) e. S ) |
| 69 | 4 68 1 | seqcl | |- ( ph -> ( seq K ( .+ , F ) ` M ) e. S ) |
| 70 | 69 | adantr | |- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( seq K ( .+ , F ) ` M ) e. S ) |
| 71 | elfzuz3 | |- ( n e. ( ( M + 1 ) ... N ) -> N e. ( ZZ>= ` n ) ) |
|
| 72 | fzss2 | |- ( N e. ( ZZ>= ` n ) -> ( ( M + 1 ) ... n ) C_ ( ( M + 1 ) ... N ) ) |
|
| 73 | 45 71 72 | 3syl | |- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( ( M + 1 ) ... n ) C_ ( ( M + 1 ) ... N ) ) |
| 74 | fzss1 | |- ( ( M + 1 ) e. ( ZZ>= ` K ) -> ( ( M + 1 ) ... N ) C_ ( K ... N ) ) |
|
| 75 | 4 50 74 | 3syl | |- ( ph -> ( ( M + 1 ) ... N ) C_ ( K ... N ) ) |
| 76 | 75 | adantr | |- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( ( M + 1 ) ... N ) C_ ( K ... N ) ) |
| 77 | 73 76 | sstrd | |- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( ( M + 1 ) ... n ) C_ ( K ... N ) ) |
| 78 | 77 | sselda | |- ( ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) /\ x e. ( ( M + 1 ) ... n ) ) -> x e. ( K ... N ) ) |
| 79 | 5 | adantlr | |- ( ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) /\ x e. ( K ... N ) ) -> ( F ` x ) e. S ) |
| 80 | 78 79 | syldan | |- ( ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) /\ x e. ( ( M + 1 ) ... n ) ) -> ( F ` x ) e. S ) |
| 81 | 1 | adantlr | |- ( ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
| 82 | 49 80 81 | seqcl | |- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( seq ( M + 1 ) ( .+ , F ) ` n ) e. S ) |
| 83 | fveq2 | |- ( x = ( n + 1 ) -> ( F ` x ) = ( F ` ( n + 1 ) ) ) |
|
| 84 | 83 | eleq1d | |- ( x = ( n + 1 ) -> ( ( F ` x ) e. S <-> ( F ` ( n + 1 ) ) e. S ) ) |
| 85 | 5 | ralrimiva | |- ( ph -> A. x e. ( K ... N ) ( F ` x ) e. S ) |
| 86 | 85 | adantr | |- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> A. x e. ( K ... N ) ( F ` x ) e. S ) |
| 87 | simpr | |- ( ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) -> ( n + 1 ) e. ( ( M + 1 ) ... N ) ) |
|
| 88 | ssel2 | |- ( ( ( ( M + 1 ) ... N ) C_ ( K ... N ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) -> ( n + 1 ) e. ( K ... N ) ) |
|
| 89 | 75 87 88 | syl2an | |- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( n + 1 ) e. ( K ... N ) ) |
| 90 | 84 86 89 | rspcdva | |- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( F ` ( n + 1 ) ) e. S ) |
| 91 | 2 | caovassg | |- ( ( ph /\ ( ( seq K ( .+ , F ) ` M ) e. S /\ ( seq ( M + 1 ) ( .+ , F ) ` n ) e. S /\ ( F ` ( n + 1 ) ) e. S ) ) -> ( ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` n ) ) .+ ( F ` ( n + 1 ) ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( ( seq ( M + 1 ) ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) ) |
| 92 | 60 70 82 90 91 | syl13anc | |- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` n ) ) .+ ( F ` ( n + 1 ) ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( ( seq ( M + 1 ) ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) ) ) |
| 93 | 59 92 | eqtr4d | |- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` ( n + 1 ) ) ) = ( ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` n ) ) .+ ( F ` ( n + 1 ) ) ) ) |
| 94 | 56 93 | eqeq12d | |- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( ( seq K ( .+ , F ) ` ( n + 1 ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` ( n + 1 ) ) ) <-> ( ( seq K ( .+ , F ) ` n ) .+ ( F ` ( n + 1 ) ) ) = ( ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` n ) ) .+ ( F ` ( n + 1 ) ) ) ) ) |
| 95 | 48 94 | imbitrrid | |- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( ( seq K ( .+ , F ) ` n ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` n ) ) -> ( seq K ( .+ , F ) ` ( n + 1 ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` ( n + 1 ) ) ) ) ) |
| 96 | 47 95 | animpimp2impd | |- ( n e. ( ZZ>= ` ( M + 1 ) ) -> ( ( ph -> ( n e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` n ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` n ) ) ) ) -> ( ph -> ( ( n + 1 ) e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` ( n + 1 ) ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` ( n + 1 ) ) ) ) ) ) ) |
| 97 | 14 21 28 35 43 96 | uzind4 | |- ( N e. ( ZZ>= ` ( M + 1 ) ) -> ( ph -> ( N e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` N ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` N ) ) ) ) ) |
| 98 | 3 97 | mpcom | |- ( ph -> ( N e. ( ( M + 1 ) ... N ) -> ( seq K ( .+ , F ) ` N ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` N ) ) ) ) |
| 99 | 7 98 | mpd | |- ( ph -> ( seq K ( .+ , F ) ` N ) = ( ( seq K ( .+ , F ) ` M ) .+ ( seq ( M + 1 ) ( .+ , F ) ` N ) ) ) |