This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of fnex for finite sets that does not require Replacement or Power Sets. (Contributed by Mario Carneiro, 16-Nov-2014) (Revised by Mario Carneiro, 24-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnfi | |- ( ( F Fn A /\ A e. Fin ) -> F e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnresdm | |- ( F Fn A -> ( F |` A ) = F ) |
|
| 2 | 1 | adantr | |- ( ( F Fn A /\ A e. Fin ) -> ( F |` A ) = F ) |
| 3 | reseq2 | |- ( x = (/) -> ( F |` x ) = ( F |` (/) ) ) |
|
| 4 | 3 | eleq1d | |- ( x = (/) -> ( ( F |` x ) e. Fin <-> ( F |` (/) ) e. Fin ) ) |
| 5 | 4 | imbi2d | |- ( x = (/) -> ( ( ( F Fn A /\ A e. Fin ) -> ( F |` x ) e. Fin ) <-> ( ( F Fn A /\ A e. Fin ) -> ( F |` (/) ) e. Fin ) ) ) |
| 6 | reseq2 | |- ( x = y -> ( F |` x ) = ( F |` y ) ) |
|
| 7 | 6 | eleq1d | |- ( x = y -> ( ( F |` x ) e. Fin <-> ( F |` y ) e. Fin ) ) |
| 8 | 7 | imbi2d | |- ( x = y -> ( ( ( F Fn A /\ A e. Fin ) -> ( F |` x ) e. Fin ) <-> ( ( F Fn A /\ A e. Fin ) -> ( F |` y ) e. Fin ) ) ) |
| 9 | reseq2 | |- ( x = ( y u. { z } ) -> ( F |` x ) = ( F |` ( y u. { z } ) ) ) |
|
| 10 | 9 | eleq1d | |- ( x = ( y u. { z } ) -> ( ( F |` x ) e. Fin <-> ( F |` ( y u. { z } ) ) e. Fin ) ) |
| 11 | 10 | imbi2d | |- ( x = ( y u. { z } ) -> ( ( ( F Fn A /\ A e. Fin ) -> ( F |` x ) e. Fin ) <-> ( ( F Fn A /\ A e. Fin ) -> ( F |` ( y u. { z } ) ) e. Fin ) ) ) |
| 12 | reseq2 | |- ( x = A -> ( F |` x ) = ( F |` A ) ) |
|
| 13 | 12 | eleq1d | |- ( x = A -> ( ( F |` x ) e. Fin <-> ( F |` A ) e. Fin ) ) |
| 14 | 13 | imbi2d | |- ( x = A -> ( ( ( F Fn A /\ A e. Fin ) -> ( F |` x ) e. Fin ) <-> ( ( F Fn A /\ A e. Fin ) -> ( F |` A ) e. Fin ) ) ) |
| 15 | res0 | |- ( F |` (/) ) = (/) |
|
| 16 | 0fi | |- (/) e. Fin |
|
| 17 | 15 16 | eqeltri | |- ( F |` (/) ) e. Fin |
| 18 | 17 | a1i | |- ( ( F Fn A /\ A e. Fin ) -> ( F |` (/) ) e. Fin ) |
| 19 | resundi | |- ( F |` ( y u. { z } ) ) = ( ( F |` y ) u. ( F |` { z } ) ) |
|
| 20 | snfi | |- { <. z , ( F ` z ) >. } e. Fin |
|
| 21 | fnfun | |- ( F Fn A -> Fun F ) |
|
| 22 | funressn | |- ( Fun F -> ( F |` { z } ) C_ { <. z , ( F ` z ) >. } ) |
|
| 23 | 21 22 | syl | |- ( F Fn A -> ( F |` { z } ) C_ { <. z , ( F ` z ) >. } ) |
| 24 | 23 | adantr | |- ( ( F Fn A /\ A e. Fin ) -> ( F |` { z } ) C_ { <. z , ( F ` z ) >. } ) |
| 25 | ssfi | |- ( ( { <. z , ( F ` z ) >. } e. Fin /\ ( F |` { z } ) C_ { <. z , ( F ` z ) >. } ) -> ( F |` { z } ) e. Fin ) |
|
| 26 | 20 24 25 | sylancr | |- ( ( F Fn A /\ A e. Fin ) -> ( F |` { z } ) e. Fin ) |
| 27 | unfi | |- ( ( ( F |` y ) e. Fin /\ ( F |` { z } ) e. Fin ) -> ( ( F |` y ) u. ( F |` { z } ) ) e. Fin ) |
|
| 28 | 26 27 | sylan2 | |- ( ( ( F |` y ) e. Fin /\ ( F Fn A /\ A e. Fin ) ) -> ( ( F |` y ) u. ( F |` { z } ) ) e. Fin ) |
| 29 | 19 28 | eqeltrid | |- ( ( ( F |` y ) e. Fin /\ ( F Fn A /\ A e. Fin ) ) -> ( F |` ( y u. { z } ) ) e. Fin ) |
| 30 | 29 | expcom | |- ( ( F Fn A /\ A e. Fin ) -> ( ( F |` y ) e. Fin -> ( F |` ( y u. { z } ) ) e. Fin ) ) |
| 31 | 30 | a2i | |- ( ( ( F Fn A /\ A e. Fin ) -> ( F |` y ) e. Fin ) -> ( ( F Fn A /\ A e. Fin ) -> ( F |` ( y u. { z } ) ) e. Fin ) ) |
| 32 | 31 | a1i | |- ( y e. Fin -> ( ( ( F Fn A /\ A e. Fin ) -> ( F |` y ) e. Fin ) -> ( ( F Fn A /\ A e. Fin ) -> ( F |` ( y u. { z } ) ) e. Fin ) ) ) |
| 33 | 5 8 11 14 18 32 | findcard2 | |- ( A e. Fin -> ( ( F Fn A /\ A e. Fin ) -> ( F |` A ) e. Fin ) ) |
| 34 | 33 | anabsi7 | |- ( ( F Fn A /\ A e. Fin ) -> ( F |` A ) e. Fin ) |
| 35 | 2 34 | eqeltrrd | |- ( ( F Fn A /\ A e. Fin ) -> F e. Fin ) |