This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Calculate the prime count of a factorial. (Contributed by Mario Carneiro, 11-Mar-2014) (Revised by Mario Carneiro, 21-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcfac | |- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( P pCnt ( ! ` N ) ) = sum_ k e. ( 1 ... M ) ( |_ ` ( N / ( P ^ k ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( x = 0 -> ( ZZ>= ` x ) = ( ZZ>= ` 0 ) ) |
|
| 2 | fveq2 | |- ( x = 0 -> ( ! ` x ) = ( ! ` 0 ) ) |
|
| 3 | 2 | oveq2d | |- ( x = 0 -> ( P pCnt ( ! ` x ) ) = ( P pCnt ( ! ` 0 ) ) ) |
| 4 | fvoveq1 | |- ( x = 0 -> ( |_ ` ( x / ( P ^ k ) ) ) = ( |_ ` ( 0 / ( P ^ k ) ) ) ) |
|
| 5 | 4 | sumeq2sdv | |- ( x = 0 -> sum_ k e. ( 1 ... m ) ( |_ ` ( x / ( P ^ k ) ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( 0 / ( P ^ k ) ) ) ) |
| 6 | 3 5 | eqeq12d | |- ( x = 0 -> ( ( P pCnt ( ! ` x ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( x / ( P ^ k ) ) ) <-> ( P pCnt ( ! ` 0 ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( 0 / ( P ^ k ) ) ) ) ) |
| 7 | 1 6 | raleqbidv | |- ( x = 0 -> ( A. m e. ( ZZ>= ` x ) ( P pCnt ( ! ` x ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( x / ( P ^ k ) ) ) <-> A. m e. ( ZZ>= ` 0 ) ( P pCnt ( ! ` 0 ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( 0 / ( P ^ k ) ) ) ) ) |
| 8 | 7 | imbi2d | |- ( x = 0 -> ( ( P e. Prime -> A. m e. ( ZZ>= ` x ) ( P pCnt ( ! ` x ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( x / ( P ^ k ) ) ) ) <-> ( P e. Prime -> A. m e. ( ZZ>= ` 0 ) ( P pCnt ( ! ` 0 ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( 0 / ( P ^ k ) ) ) ) ) ) |
| 9 | fveq2 | |- ( x = n -> ( ZZ>= ` x ) = ( ZZ>= ` n ) ) |
|
| 10 | fveq2 | |- ( x = n -> ( ! ` x ) = ( ! ` n ) ) |
|
| 11 | 10 | oveq2d | |- ( x = n -> ( P pCnt ( ! ` x ) ) = ( P pCnt ( ! ` n ) ) ) |
| 12 | fvoveq1 | |- ( x = n -> ( |_ ` ( x / ( P ^ k ) ) ) = ( |_ ` ( n / ( P ^ k ) ) ) ) |
|
| 13 | 12 | sumeq2sdv | |- ( x = n -> sum_ k e. ( 1 ... m ) ( |_ ` ( x / ( P ^ k ) ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) ) |
| 14 | 11 13 | eqeq12d | |- ( x = n -> ( ( P pCnt ( ! ` x ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( x / ( P ^ k ) ) ) <-> ( P pCnt ( ! ` n ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) ) ) |
| 15 | 9 14 | raleqbidv | |- ( x = n -> ( A. m e. ( ZZ>= ` x ) ( P pCnt ( ! ` x ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( x / ( P ^ k ) ) ) <-> A. m e. ( ZZ>= ` n ) ( P pCnt ( ! ` n ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) ) ) |
| 16 | 15 | imbi2d | |- ( x = n -> ( ( P e. Prime -> A. m e. ( ZZ>= ` x ) ( P pCnt ( ! ` x ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( x / ( P ^ k ) ) ) ) <-> ( P e. Prime -> A. m e. ( ZZ>= ` n ) ( P pCnt ( ! ` n ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) ) ) ) |
| 17 | fveq2 | |- ( x = ( n + 1 ) -> ( ZZ>= ` x ) = ( ZZ>= ` ( n + 1 ) ) ) |
|
| 18 | fveq2 | |- ( x = ( n + 1 ) -> ( ! ` x ) = ( ! ` ( n + 1 ) ) ) |
|
| 19 | 18 | oveq2d | |- ( x = ( n + 1 ) -> ( P pCnt ( ! ` x ) ) = ( P pCnt ( ! ` ( n + 1 ) ) ) ) |
| 20 | fvoveq1 | |- ( x = ( n + 1 ) -> ( |_ ` ( x / ( P ^ k ) ) ) = ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) ) |
|
| 21 | 20 | sumeq2sdv | |- ( x = ( n + 1 ) -> sum_ k e. ( 1 ... m ) ( |_ ` ( x / ( P ^ k ) ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) ) |
| 22 | 19 21 | eqeq12d | |- ( x = ( n + 1 ) -> ( ( P pCnt ( ! ` x ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( x / ( P ^ k ) ) ) <-> ( P pCnt ( ! ` ( n + 1 ) ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) ) ) |
| 23 | 17 22 | raleqbidv | |- ( x = ( n + 1 ) -> ( A. m e. ( ZZ>= ` x ) ( P pCnt ( ! ` x ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( x / ( P ^ k ) ) ) <-> A. m e. ( ZZ>= ` ( n + 1 ) ) ( P pCnt ( ! ` ( n + 1 ) ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) ) ) |
| 24 | 23 | imbi2d | |- ( x = ( n + 1 ) -> ( ( P e. Prime -> A. m e. ( ZZ>= ` x ) ( P pCnt ( ! ` x ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( x / ( P ^ k ) ) ) ) <-> ( P e. Prime -> A. m e. ( ZZ>= ` ( n + 1 ) ) ( P pCnt ( ! ` ( n + 1 ) ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) ) ) ) |
| 25 | fveq2 | |- ( x = N -> ( ZZ>= ` x ) = ( ZZ>= ` N ) ) |
|
| 26 | fveq2 | |- ( x = N -> ( ! ` x ) = ( ! ` N ) ) |
|
| 27 | 26 | oveq2d | |- ( x = N -> ( P pCnt ( ! ` x ) ) = ( P pCnt ( ! ` N ) ) ) |
| 28 | fvoveq1 | |- ( x = N -> ( |_ ` ( x / ( P ^ k ) ) ) = ( |_ ` ( N / ( P ^ k ) ) ) ) |
|
| 29 | 28 | sumeq2sdv | |- ( x = N -> sum_ k e. ( 1 ... m ) ( |_ ` ( x / ( P ^ k ) ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( N / ( P ^ k ) ) ) ) |
| 30 | 27 29 | eqeq12d | |- ( x = N -> ( ( P pCnt ( ! ` x ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( x / ( P ^ k ) ) ) <-> ( P pCnt ( ! ` N ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( N / ( P ^ k ) ) ) ) ) |
| 31 | 25 30 | raleqbidv | |- ( x = N -> ( A. m e. ( ZZ>= ` x ) ( P pCnt ( ! ` x ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( x / ( P ^ k ) ) ) <-> A. m e. ( ZZ>= ` N ) ( P pCnt ( ! ` N ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( N / ( P ^ k ) ) ) ) ) |
| 32 | 31 | imbi2d | |- ( x = N -> ( ( P e. Prime -> A. m e. ( ZZ>= ` x ) ( P pCnt ( ! ` x ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( x / ( P ^ k ) ) ) ) <-> ( P e. Prime -> A. m e. ( ZZ>= ` N ) ( P pCnt ( ! ` N ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( N / ( P ^ k ) ) ) ) ) ) |
| 33 | fzfid | |- ( ( P e. Prime /\ m e. ( ZZ>= ` 0 ) ) -> ( 1 ... m ) e. Fin ) |
|
| 34 | sumz | |- ( ( ( 1 ... m ) C_ ( ZZ>= ` 1 ) \/ ( 1 ... m ) e. Fin ) -> sum_ k e. ( 1 ... m ) 0 = 0 ) |
|
| 35 | 34 | olcs | |- ( ( 1 ... m ) e. Fin -> sum_ k e. ( 1 ... m ) 0 = 0 ) |
| 36 | 33 35 | syl | |- ( ( P e. Prime /\ m e. ( ZZ>= ` 0 ) ) -> sum_ k e. ( 1 ... m ) 0 = 0 ) |
| 37 | 0nn0 | |- 0 e. NN0 |
|
| 38 | elfznn | |- ( k e. ( 1 ... m ) -> k e. NN ) |
|
| 39 | 38 | nnnn0d | |- ( k e. ( 1 ... m ) -> k e. NN0 ) |
| 40 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 41 | 39 40 | eleqtrdi | |- ( k e. ( 1 ... m ) -> k e. ( ZZ>= ` 0 ) ) |
| 42 | 41 | adantl | |- ( ( ( P e. Prime /\ m e. ( ZZ>= ` 0 ) ) /\ k e. ( 1 ... m ) ) -> k e. ( ZZ>= ` 0 ) ) |
| 43 | simpll | |- ( ( ( P e. Prime /\ m e. ( ZZ>= ` 0 ) ) /\ k e. ( 1 ... m ) ) -> P e. Prime ) |
|
| 44 | pcfaclem | |- ( ( 0 e. NN0 /\ k e. ( ZZ>= ` 0 ) /\ P e. Prime ) -> ( |_ ` ( 0 / ( P ^ k ) ) ) = 0 ) |
|
| 45 | 37 42 43 44 | mp3an2i | |- ( ( ( P e. Prime /\ m e. ( ZZ>= ` 0 ) ) /\ k e. ( 1 ... m ) ) -> ( |_ ` ( 0 / ( P ^ k ) ) ) = 0 ) |
| 46 | 45 | sumeq2dv | |- ( ( P e. Prime /\ m e. ( ZZ>= ` 0 ) ) -> sum_ k e. ( 1 ... m ) ( |_ ` ( 0 / ( P ^ k ) ) ) = sum_ k e. ( 1 ... m ) 0 ) |
| 47 | fac0 | |- ( ! ` 0 ) = 1 |
|
| 48 | 47 | oveq2i | |- ( P pCnt ( ! ` 0 ) ) = ( P pCnt 1 ) |
| 49 | pc1 | |- ( P e. Prime -> ( P pCnt 1 ) = 0 ) |
|
| 50 | 48 49 | eqtrid | |- ( P e. Prime -> ( P pCnt ( ! ` 0 ) ) = 0 ) |
| 51 | 50 | adantr | |- ( ( P e. Prime /\ m e. ( ZZ>= ` 0 ) ) -> ( P pCnt ( ! ` 0 ) ) = 0 ) |
| 52 | 36 46 51 | 3eqtr4rd | |- ( ( P e. Prime /\ m e. ( ZZ>= ` 0 ) ) -> ( P pCnt ( ! ` 0 ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( 0 / ( P ^ k ) ) ) ) |
| 53 | 52 | ralrimiva | |- ( P e. Prime -> A. m e. ( ZZ>= ` 0 ) ( P pCnt ( ! ` 0 ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( 0 / ( P ^ k ) ) ) ) |
| 54 | nn0z | |- ( n e. NN0 -> n e. ZZ ) |
|
| 55 | 54 | adantr | |- ( ( n e. NN0 /\ P e. Prime ) -> n e. ZZ ) |
| 56 | uzid | |- ( n e. ZZ -> n e. ( ZZ>= ` n ) ) |
|
| 57 | peano2uz | |- ( n e. ( ZZ>= ` n ) -> ( n + 1 ) e. ( ZZ>= ` n ) ) |
|
| 58 | 55 56 57 | 3syl | |- ( ( n e. NN0 /\ P e. Prime ) -> ( n + 1 ) e. ( ZZ>= ` n ) ) |
| 59 | uzss | |- ( ( n + 1 ) e. ( ZZ>= ` n ) -> ( ZZ>= ` ( n + 1 ) ) C_ ( ZZ>= ` n ) ) |
|
| 60 | ssralv | |- ( ( ZZ>= ` ( n + 1 ) ) C_ ( ZZ>= ` n ) -> ( A. m e. ( ZZ>= ` n ) ( P pCnt ( ! ` n ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) -> A. m e. ( ZZ>= ` ( n + 1 ) ) ( P pCnt ( ! ` n ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) ) ) |
|
| 61 | 58 59 60 | 3syl | |- ( ( n e. NN0 /\ P e. Prime ) -> ( A. m e. ( ZZ>= ` n ) ( P pCnt ( ! ` n ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) -> A. m e. ( ZZ>= ` ( n + 1 ) ) ( P pCnt ( ! ` n ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) ) ) |
| 62 | oveq1 | |- ( ( P pCnt ( ! ` n ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) -> ( ( P pCnt ( ! ` n ) ) + ( P pCnt ( n + 1 ) ) ) = ( sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) + ( P pCnt ( n + 1 ) ) ) ) |
|
| 63 | simpll | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> n e. NN0 ) |
|
| 64 | facp1 | |- ( n e. NN0 -> ( ! ` ( n + 1 ) ) = ( ( ! ` n ) x. ( n + 1 ) ) ) |
|
| 65 | 63 64 | syl | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( ! ` ( n + 1 ) ) = ( ( ! ` n ) x. ( n + 1 ) ) ) |
| 66 | 65 | oveq2d | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( P pCnt ( ! ` ( n + 1 ) ) ) = ( P pCnt ( ( ! ` n ) x. ( n + 1 ) ) ) ) |
| 67 | simplr | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> P e. Prime ) |
|
| 68 | faccl | |- ( n e. NN0 -> ( ! ` n ) e. NN ) |
|
| 69 | nnz | |- ( ( ! ` n ) e. NN -> ( ! ` n ) e. ZZ ) |
|
| 70 | nnne0 | |- ( ( ! ` n ) e. NN -> ( ! ` n ) =/= 0 ) |
|
| 71 | 69 70 | jca | |- ( ( ! ` n ) e. NN -> ( ( ! ` n ) e. ZZ /\ ( ! ` n ) =/= 0 ) ) |
| 72 | 63 68 71 | 3syl | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( ( ! ` n ) e. ZZ /\ ( ! ` n ) =/= 0 ) ) |
| 73 | nn0p1nn | |- ( n e. NN0 -> ( n + 1 ) e. NN ) |
|
| 74 | nnz | |- ( ( n + 1 ) e. NN -> ( n + 1 ) e. ZZ ) |
|
| 75 | nnne0 | |- ( ( n + 1 ) e. NN -> ( n + 1 ) =/= 0 ) |
|
| 76 | 74 75 | jca | |- ( ( n + 1 ) e. NN -> ( ( n + 1 ) e. ZZ /\ ( n + 1 ) =/= 0 ) ) |
| 77 | 63 73 76 | 3syl | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( ( n + 1 ) e. ZZ /\ ( n + 1 ) =/= 0 ) ) |
| 78 | pcmul | |- ( ( P e. Prime /\ ( ( ! ` n ) e. ZZ /\ ( ! ` n ) =/= 0 ) /\ ( ( n + 1 ) e. ZZ /\ ( n + 1 ) =/= 0 ) ) -> ( P pCnt ( ( ! ` n ) x. ( n + 1 ) ) ) = ( ( P pCnt ( ! ` n ) ) + ( P pCnt ( n + 1 ) ) ) ) |
|
| 79 | 67 72 77 78 | syl3anc | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( P pCnt ( ( ! ` n ) x. ( n + 1 ) ) ) = ( ( P pCnt ( ! ` n ) ) + ( P pCnt ( n + 1 ) ) ) ) |
| 80 | 66 79 | eqtr2d | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( ( P pCnt ( ! ` n ) ) + ( P pCnt ( n + 1 ) ) ) = ( P pCnt ( ! ` ( n + 1 ) ) ) ) |
| 81 | 63 | adantr | |- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> n e. NN0 ) |
| 82 | 81 | nn0zd | |- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> n e. ZZ ) |
| 83 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 84 | 83 | ad2antlr | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> P e. NN ) |
| 85 | nnexpcl | |- ( ( P e. NN /\ k e. NN0 ) -> ( P ^ k ) e. NN ) |
|
| 86 | 84 39 85 | syl2an | |- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> ( P ^ k ) e. NN ) |
| 87 | fldivp1 | |- ( ( n e. ZZ /\ ( P ^ k ) e. NN ) -> ( ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) - ( |_ ` ( n / ( P ^ k ) ) ) ) = if ( ( P ^ k ) || ( n + 1 ) , 1 , 0 ) ) |
|
| 88 | 82 86 87 | syl2anc | |- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> ( ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) - ( |_ ` ( n / ( P ^ k ) ) ) ) = if ( ( P ^ k ) || ( n + 1 ) , 1 , 0 ) ) |
| 89 | elfzuz | |- ( k e. ( 1 ... m ) -> k e. ( ZZ>= ` 1 ) ) |
|
| 90 | 63 73 | syl | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( n + 1 ) e. NN ) |
| 91 | 67 90 | pccld | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( P pCnt ( n + 1 ) ) e. NN0 ) |
| 92 | 91 | nn0zd | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( P pCnt ( n + 1 ) ) e. ZZ ) |
| 93 | elfz5 | |- ( ( k e. ( ZZ>= ` 1 ) /\ ( P pCnt ( n + 1 ) ) e. ZZ ) -> ( k e. ( 1 ... ( P pCnt ( n + 1 ) ) ) <-> k <_ ( P pCnt ( n + 1 ) ) ) ) |
|
| 94 | 89 92 93 | syl2anr | |- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> ( k e. ( 1 ... ( P pCnt ( n + 1 ) ) ) <-> k <_ ( P pCnt ( n + 1 ) ) ) ) |
| 95 | simpllr | |- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> P e. Prime ) |
|
| 96 | 81 73 | syl | |- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> ( n + 1 ) e. NN ) |
| 97 | 96 | nnzd | |- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> ( n + 1 ) e. ZZ ) |
| 98 | 39 | adantl | |- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> k e. NN0 ) |
| 99 | pcdvdsb | |- ( ( P e. Prime /\ ( n + 1 ) e. ZZ /\ k e. NN0 ) -> ( k <_ ( P pCnt ( n + 1 ) ) <-> ( P ^ k ) || ( n + 1 ) ) ) |
|
| 100 | 95 97 98 99 | syl3anc | |- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> ( k <_ ( P pCnt ( n + 1 ) ) <-> ( P ^ k ) || ( n + 1 ) ) ) |
| 101 | 94 100 | bitr2d | |- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> ( ( P ^ k ) || ( n + 1 ) <-> k e. ( 1 ... ( P pCnt ( n + 1 ) ) ) ) ) |
| 102 | 101 | ifbid | |- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> if ( ( P ^ k ) || ( n + 1 ) , 1 , 0 ) = if ( k e. ( 1 ... ( P pCnt ( n + 1 ) ) ) , 1 , 0 ) ) |
| 103 | 88 102 | eqtrd | |- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> ( ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) - ( |_ ` ( n / ( P ^ k ) ) ) ) = if ( k e. ( 1 ... ( P pCnt ( n + 1 ) ) ) , 1 , 0 ) ) |
| 104 | 103 | sumeq2dv | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> sum_ k e. ( 1 ... m ) ( ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) - ( |_ ` ( n / ( P ^ k ) ) ) ) = sum_ k e. ( 1 ... m ) if ( k e. ( 1 ... ( P pCnt ( n + 1 ) ) ) , 1 , 0 ) ) |
| 105 | fzfid | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( 1 ... m ) e. Fin ) |
|
| 106 | 63 | nn0red | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> n e. RR ) |
| 107 | peano2re | |- ( n e. RR -> ( n + 1 ) e. RR ) |
|
| 108 | 106 107 | syl | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( n + 1 ) e. RR ) |
| 109 | 108 | adantr | |- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> ( n + 1 ) e. RR ) |
| 110 | 109 86 | nndivred | |- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> ( ( n + 1 ) / ( P ^ k ) ) e. RR ) |
| 111 | 110 | flcld | |- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) e. ZZ ) |
| 112 | 111 | zcnd | |- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) e. CC ) |
| 113 | 106 | adantr | |- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> n e. RR ) |
| 114 | 113 86 | nndivred | |- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> ( n / ( P ^ k ) ) e. RR ) |
| 115 | 114 | flcld | |- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> ( |_ ` ( n / ( P ^ k ) ) ) e. ZZ ) |
| 116 | 115 | zcnd | |- ( ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) /\ k e. ( 1 ... m ) ) -> ( |_ ` ( n / ( P ^ k ) ) ) e. CC ) |
| 117 | 105 112 116 | fsumsub | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> sum_ k e. ( 1 ... m ) ( ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) - ( |_ ` ( n / ( P ^ k ) ) ) ) = ( sum_ k e. ( 1 ... m ) ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) - sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) ) ) |
| 118 | fzfi | |- ( 1 ... m ) e. Fin |
|
| 119 | 91 | nn0red | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( P pCnt ( n + 1 ) ) e. RR ) |
| 120 | eluzelz | |- ( m e. ( ZZ>= ` ( n + 1 ) ) -> m e. ZZ ) |
|
| 121 | 120 | adantl | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> m e. ZZ ) |
| 122 | 121 | zred | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> m e. RR ) |
| 123 | prmuz2 | |- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
|
| 124 | 123 | ad2antlr | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> P e. ( ZZ>= ` 2 ) ) |
| 125 | 90 | nnnn0d | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( n + 1 ) e. NN0 ) |
| 126 | bernneq3 | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( n + 1 ) e. NN0 ) -> ( n + 1 ) < ( P ^ ( n + 1 ) ) ) |
|
| 127 | 124 125 126 | syl2anc | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( n + 1 ) < ( P ^ ( n + 1 ) ) ) |
| 128 | 119 108 | letrid | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( ( P pCnt ( n + 1 ) ) <_ ( n + 1 ) \/ ( n + 1 ) <_ ( P pCnt ( n + 1 ) ) ) ) |
| 129 | 128 | ord | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( -. ( P pCnt ( n + 1 ) ) <_ ( n + 1 ) -> ( n + 1 ) <_ ( P pCnt ( n + 1 ) ) ) ) |
| 130 | 90 | nnzd | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( n + 1 ) e. ZZ ) |
| 131 | pcdvdsb | |- ( ( P e. Prime /\ ( n + 1 ) e. ZZ /\ ( n + 1 ) e. NN0 ) -> ( ( n + 1 ) <_ ( P pCnt ( n + 1 ) ) <-> ( P ^ ( n + 1 ) ) || ( n + 1 ) ) ) |
|
| 132 | 67 130 125 131 | syl3anc | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( ( n + 1 ) <_ ( P pCnt ( n + 1 ) ) <-> ( P ^ ( n + 1 ) ) || ( n + 1 ) ) ) |
| 133 | 84 125 | nnexpcld | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( P ^ ( n + 1 ) ) e. NN ) |
| 134 | 133 | nnzd | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( P ^ ( n + 1 ) ) e. ZZ ) |
| 135 | dvdsle | |- ( ( ( P ^ ( n + 1 ) ) e. ZZ /\ ( n + 1 ) e. NN ) -> ( ( P ^ ( n + 1 ) ) || ( n + 1 ) -> ( P ^ ( n + 1 ) ) <_ ( n + 1 ) ) ) |
|
| 136 | 134 90 135 | syl2anc | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( ( P ^ ( n + 1 ) ) || ( n + 1 ) -> ( P ^ ( n + 1 ) ) <_ ( n + 1 ) ) ) |
| 137 | 133 | nnred | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( P ^ ( n + 1 ) ) e. RR ) |
| 138 | 137 108 | lenltd | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( ( P ^ ( n + 1 ) ) <_ ( n + 1 ) <-> -. ( n + 1 ) < ( P ^ ( n + 1 ) ) ) ) |
| 139 | 136 138 | sylibd | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( ( P ^ ( n + 1 ) ) || ( n + 1 ) -> -. ( n + 1 ) < ( P ^ ( n + 1 ) ) ) ) |
| 140 | 132 139 | sylbid | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( ( n + 1 ) <_ ( P pCnt ( n + 1 ) ) -> -. ( n + 1 ) < ( P ^ ( n + 1 ) ) ) ) |
| 141 | 129 140 | syld | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( -. ( P pCnt ( n + 1 ) ) <_ ( n + 1 ) -> -. ( n + 1 ) < ( P ^ ( n + 1 ) ) ) ) |
| 142 | 127 141 | mt4d | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( P pCnt ( n + 1 ) ) <_ ( n + 1 ) ) |
| 143 | eluzle | |- ( m e. ( ZZ>= ` ( n + 1 ) ) -> ( n + 1 ) <_ m ) |
|
| 144 | 143 | adantl | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( n + 1 ) <_ m ) |
| 145 | 119 108 122 142 144 | letrd | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( P pCnt ( n + 1 ) ) <_ m ) |
| 146 | eluz | |- ( ( ( P pCnt ( n + 1 ) ) e. ZZ /\ m e. ZZ ) -> ( m e. ( ZZ>= ` ( P pCnt ( n + 1 ) ) ) <-> ( P pCnt ( n + 1 ) ) <_ m ) ) |
|
| 147 | 92 121 146 | syl2anc | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( m e. ( ZZ>= ` ( P pCnt ( n + 1 ) ) ) <-> ( P pCnt ( n + 1 ) ) <_ m ) ) |
| 148 | 145 147 | mpbird | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> m e. ( ZZ>= ` ( P pCnt ( n + 1 ) ) ) ) |
| 149 | fzss2 | |- ( m e. ( ZZ>= ` ( P pCnt ( n + 1 ) ) ) -> ( 1 ... ( P pCnt ( n + 1 ) ) ) C_ ( 1 ... m ) ) |
|
| 150 | 148 149 | syl | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( 1 ... ( P pCnt ( n + 1 ) ) ) C_ ( 1 ... m ) ) |
| 151 | sumhash | |- ( ( ( 1 ... m ) e. Fin /\ ( 1 ... ( P pCnt ( n + 1 ) ) ) C_ ( 1 ... m ) ) -> sum_ k e. ( 1 ... m ) if ( k e. ( 1 ... ( P pCnt ( n + 1 ) ) ) , 1 , 0 ) = ( # ` ( 1 ... ( P pCnt ( n + 1 ) ) ) ) ) |
|
| 152 | 118 150 151 | sylancr | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> sum_ k e. ( 1 ... m ) if ( k e. ( 1 ... ( P pCnt ( n + 1 ) ) ) , 1 , 0 ) = ( # ` ( 1 ... ( P pCnt ( n + 1 ) ) ) ) ) |
| 153 | hashfz1 | |- ( ( P pCnt ( n + 1 ) ) e. NN0 -> ( # ` ( 1 ... ( P pCnt ( n + 1 ) ) ) ) = ( P pCnt ( n + 1 ) ) ) |
|
| 154 | 91 153 | syl | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( # ` ( 1 ... ( P pCnt ( n + 1 ) ) ) ) = ( P pCnt ( n + 1 ) ) ) |
| 155 | 152 154 | eqtrd | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> sum_ k e. ( 1 ... m ) if ( k e. ( 1 ... ( P pCnt ( n + 1 ) ) ) , 1 , 0 ) = ( P pCnt ( n + 1 ) ) ) |
| 156 | 104 117 155 | 3eqtr3d | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( sum_ k e. ( 1 ... m ) ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) - sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) ) = ( P pCnt ( n + 1 ) ) ) |
| 157 | 105 112 | fsumcl | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> sum_ k e. ( 1 ... m ) ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) e. CC ) |
| 158 | 105 116 | fsumcl | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) e. CC ) |
| 159 | 119 | recnd | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( P pCnt ( n + 1 ) ) e. CC ) |
| 160 | 157 158 159 | subaddd | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( ( sum_ k e. ( 1 ... m ) ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) - sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) ) = ( P pCnt ( n + 1 ) ) <-> ( sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) + ( P pCnt ( n + 1 ) ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) ) ) |
| 161 | 156 160 | mpbid | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) + ( P pCnt ( n + 1 ) ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) ) |
| 162 | 80 161 | eqeq12d | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( ( ( P pCnt ( ! ` n ) ) + ( P pCnt ( n + 1 ) ) ) = ( sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) + ( P pCnt ( n + 1 ) ) ) <-> ( P pCnt ( ! ` ( n + 1 ) ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) ) ) |
| 163 | 62 162 | imbitrid | |- ( ( ( n e. NN0 /\ P e. Prime ) /\ m e. ( ZZ>= ` ( n + 1 ) ) ) -> ( ( P pCnt ( ! ` n ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) -> ( P pCnt ( ! ` ( n + 1 ) ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) ) ) |
| 164 | 163 | ralimdva | |- ( ( n e. NN0 /\ P e. Prime ) -> ( A. m e. ( ZZ>= ` ( n + 1 ) ) ( P pCnt ( ! ` n ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) -> A. m e. ( ZZ>= ` ( n + 1 ) ) ( P pCnt ( ! ` ( n + 1 ) ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) ) ) |
| 165 | 61 164 | syld | |- ( ( n e. NN0 /\ P e. Prime ) -> ( A. m e. ( ZZ>= ` n ) ( P pCnt ( ! ` n ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) -> A. m e. ( ZZ>= ` ( n + 1 ) ) ( P pCnt ( ! ` ( n + 1 ) ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) ) ) |
| 166 | 165 | ex | |- ( n e. NN0 -> ( P e. Prime -> ( A. m e. ( ZZ>= ` n ) ( P pCnt ( ! ` n ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) -> A. m e. ( ZZ>= ` ( n + 1 ) ) ( P pCnt ( ! ` ( n + 1 ) ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) ) ) ) |
| 167 | 166 | a2d | |- ( n e. NN0 -> ( ( P e. Prime -> A. m e. ( ZZ>= ` n ) ( P pCnt ( ! ` n ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( n / ( P ^ k ) ) ) ) -> ( P e. Prime -> A. m e. ( ZZ>= ` ( n + 1 ) ) ( P pCnt ( ! ` ( n + 1 ) ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( ( n + 1 ) / ( P ^ k ) ) ) ) ) ) |
| 168 | 8 16 24 32 53 167 | nn0ind | |- ( N e. NN0 -> ( P e. Prime -> A. m e. ( ZZ>= ` N ) ( P pCnt ( ! ` N ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( N / ( P ^ k ) ) ) ) ) |
| 169 | 168 | imp | |- ( ( N e. NN0 /\ P e. Prime ) -> A. m e. ( ZZ>= ` N ) ( P pCnt ( ! ` N ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( N / ( P ^ k ) ) ) ) |
| 170 | oveq2 | |- ( m = M -> ( 1 ... m ) = ( 1 ... M ) ) |
|
| 171 | 170 | sumeq1d | |- ( m = M -> sum_ k e. ( 1 ... m ) ( |_ ` ( N / ( P ^ k ) ) ) = sum_ k e. ( 1 ... M ) ( |_ ` ( N / ( P ^ k ) ) ) ) |
| 172 | 171 | eqeq2d | |- ( m = M -> ( ( P pCnt ( ! ` N ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( N / ( P ^ k ) ) ) <-> ( P pCnt ( ! ` N ) ) = sum_ k e. ( 1 ... M ) ( |_ ` ( N / ( P ^ k ) ) ) ) ) |
| 173 | 172 | rspcv | |- ( M e. ( ZZ>= ` N ) -> ( A. m e. ( ZZ>= ` N ) ( P pCnt ( ! ` N ) ) = sum_ k e. ( 1 ... m ) ( |_ ` ( N / ( P ^ k ) ) ) -> ( P pCnt ( ! ` N ) ) = sum_ k e. ( 1 ... M ) ( |_ ` ( N / ( P ^ k ) ) ) ) ) |
| 174 | 169 173 | syl5 | |- ( M e. ( ZZ>= ` N ) -> ( ( N e. NN0 /\ P e. Prime ) -> ( P pCnt ( ! ` N ) ) = sum_ k e. ( 1 ... M ) ( |_ ` ( N / ( P ^ k ) ) ) ) ) |
| 175 | 174 | 3impib | |- ( ( M e. ( ZZ>= ` N ) /\ N e. NN0 /\ P e. Prime ) -> ( P pCnt ( ! ` N ) ) = sum_ k e. ( 1 ... M ) ( |_ ` ( N / ( P ^ k ) ) ) ) |
| 176 | 175 | 3com12 | |- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( P pCnt ( ! ` N ) ) = sum_ k e. ( 1 ... M ) ( |_ ` ( N / ( P ^ k ) ) ) ) |