This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The difference between the floors of adjacent fractions is either 1 or 0. (Contributed by Mario Carneiro, 8-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fldivp1 | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( |_ ` ( ( M + 1 ) / N ) ) - ( |_ ` ( M / N ) ) ) = if ( N || ( M + 1 ) , 1 , 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 2 | nnne0 | |- ( N e. NN -> N =/= 0 ) |
|
| 3 | peano2z | |- ( M e. ZZ -> ( M + 1 ) e. ZZ ) |
|
| 4 | 3 | adantr | |- ( ( M e. ZZ /\ N e. NN ) -> ( M + 1 ) e. ZZ ) |
| 5 | dvdsval2 | |- ( ( N e. ZZ /\ N =/= 0 /\ ( M + 1 ) e. ZZ ) -> ( N || ( M + 1 ) <-> ( ( M + 1 ) / N ) e. ZZ ) ) |
|
| 6 | 1 2 4 5 | syl2an23an | |- ( ( M e. ZZ /\ N e. NN ) -> ( N || ( M + 1 ) <-> ( ( M + 1 ) / N ) e. ZZ ) ) |
| 7 | 6 | biimpa | |- ( ( ( M e. ZZ /\ N e. NN ) /\ N || ( M + 1 ) ) -> ( ( M + 1 ) / N ) e. ZZ ) |
| 8 | flid | |- ( ( ( M + 1 ) / N ) e. ZZ -> ( |_ ` ( ( M + 1 ) / N ) ) = ( ( M + 1 ) / N ) ) |
|
| 9 | 7 8 | syl | |- ( ( ( M e. ZZ /\ N e. NN ) /\ N || ( M + 1 ) ) -> ( |_ ` ( ( M + 1 ) / N ) ) = ( ( M + 1 ) / N ) ) |
| 10 | nnm1nn0 | |- ( N e. NN -> ( N - 1 ) e. NN0 ) |
|
| 11 | 10 | nn0red | |- ( N e. NN -> ( N - 1 ) e. RR ) |
| 12 | 10 | nn0ge0d | |- ( N e. NN -> 0 <_ ( N - 1 ) ) |
| 13 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 14 | nngt0 | |- ( N e. NN -> 0 < N ) |
|
| 15 | divge0 | |- ( ( ( ( N - 1 ) e. RR /\ 0 <_ ( N - 1 ) ) /\ ( N e. RR /\ 0 < N ) ) -> 0 <_ ( ( N - 1 ) / N ) ) |
|
| 16 | 11 12 13 14 15 | syl22anc | |- ( N e. NN -> 0 <_ ( ( N - 1 ) / N ) ) |
| 17 | 16 | ad2antlr | |- ( ( ( M e. ZZ /\ N e. NN ) /\ N || ( M + 1 ) ) -> 0 <_ ( ( N - 1 ) / N ) ) |
| 18 | 13 | ltm1d | |- ( N e. NN -> ( N - 1 ) < N ) |
| 19 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 20 | 19 | mulridd | |- ( N e. NN -> ( N x. 1 ) = N ) |
| 21 | 18 20 | breqtrrd | |- ( N e. NN -> ( N - 1 ) < ( N x. 1 ) ) |
| 22 | 1re | |- 1 e. RR |
|
| 23 | 22 | a1i | |- ( N e. NN -> 1 e. RR ) |
| 24 | ltdivmul | |- ( ( ( N - 1 ) e. RR /\ 1 e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( ( ( N - 1 ) / N ) < 1 <-> ( N - 1 ) < ( N x. 1 ) ) ) |
|
| 25 | 11 23 13 14 24 | syl112anc | |- ( N e. NN -> ( ( ( N - 1 ) / N ) < 1 <-> ( N - 1 ) < ( N x. 1 ) ) ) |
| 26 | 21 25 | mpbird | |- ( N e. NN -> ( ( N - 1 ) / N ) < 1 ) |
| 27 | 26 | ad2antlr | |- ( ( ( M e. ZZ /\ N e. NN ) /\ N || ( M + 1 ) ) -> ( ( N - 1 ) / N ) < 1 ) |
| 28 | nndivre | |- ( ( ( N - 1 ) e. RR /\ N e. NN ) -> ( ( N - 1 ) / N ) e. RR ) |
|
| 29 | 11 28 | mpancom | |- ( N e. NN -> ( ( N - 1 ) / N ) e. RR ) |
| 30 | 29 | ad2antlr | |- ( ( ( M e. ZZ /\ N e. NN ) /\ N || ( M + 1 ) ) -> ( ( N - 1 ) / N ) e. RR ) |
| 31 | flbi2 | |- ( ( ( ( M + 1 ) / N ) e. ZZ /\ ( ( N - 1 ) / N ) e. RR ) -> ( ( |_ ` ( ( ( M + 1 ) / N ) + ( ( N - 1 ) / N ) ) ) = ( ( M + 1 ) / N ) <-> ( 0 <_ ( ( N - 1 ) / N ) /\ ( ( N - 1 ) / N ) < 1 ) ) ) |
|
| 32 | 7 30 31 | syl2anc | |- ( ( ( M e. ZZ /\ N e. NN ) /\ N || ( M + 1 ) ) -> ( ( |_ ` ( ( ( M + 1 ) / N ) + ( ( N - 1 ) / N ) ) ) = ( ( M + 1 ) / N ) <-> ( 0 <_ ( ( N - 1 ) / N ) /\ ( ( N - 1 ) / N ) < 1 ) ) ) |
| 33 | 17 27 32 | mpbir2and | |- ( ( ( M e. ZZ /\ N e. NN ) /\ N || ( M + 1 ) ) -> ( |_ ` ( ( ( M + 1 ) / N ) + ( ( N - 1 ) / N ) ) ) = ( ( M + 1 ) / N ) ) |
| 34 | 9 33 | eqtr4d | |- ( ( ( M e. ZZ /\ N e. NN ) /\ N || ( M + 1 ) ) -> ( |_ ` ( ( M + 1 ) / N ) ) = ( |_ ` ( ( ( M + 1 ) / N ) + ( ( N - 1 ) / N ) ) ) ) |
| 35 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 36 | 35 | adantr | |- ( ( M e. ZZ /\ N e. NN ) -> M e. CC ) |
| 37 | ax-1cn | |- 1 e. CC |
|
| 38 | 37 | a1i | |- ( ( M e. ZZ /\ N e. NN ) -> 1 e. CC ) |
| 39 | 19 | adantl | |- ( ( M e. ZZ /\ N e. NN ) -> N e. CC ) |
| 40 | 36 38 39 | ppncand | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( M + 1 ) + ( N - 1 ) ) = ( M + N ) ) |
| 41 | 40 | oveq1d | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( M + 1 ) + ( N - 1 ) ) / N ) = ( ( M + N ) / N ) ) |
| 42 | 4 | zcnd | |- ( ( M e. ZZ /\ N e. NN ) -> ( M + 1 ) e. CC ) |
| 43 | subcl | |- ( ( N e. CC /\ 1 e. CC ) -> ( N - 1 ) e. CC ) |
|
| 44 | 19 37 43 | sylancl | |- ( N e. NN -> ( N - 1 ) e. CC ) |
| 45 | 44 | adantl | |- ( ( M e. ZZ /\ N e. NN ) -> ( N - 1 ) e. CC ) |
| 46 | 2 | adantl | |- ( ( M e. ZZ /\ N e. NN ) -> N =/= 0 ) |
| 47 | 42 45 39 46 | divdird | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( M + 1 ) + ( N - 1 ) ) / N ) = ( ( ( M + 1 ) / N ) + ( ( N - 1 ) / N ) ) ) |
| 48 | 41 47 | eqtr3d | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( M + N ) / N ) = ( ( ( M + 1 ) / N ) + ( ( N - 1 ) / N ) ) ) |
| 49 | 36 39 39 46 | divdird | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( M + N ) / N ) = ( ( M / N ) + ( N / N ) ) ) |
| 50 | 48 49 | eqtr3d | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( M + 1 ) / N ) + ( ( N - 1 ) / N ) ) = ( ( M / N ) + ( N / N ) ) ) |
| 51 | 39 46 | dividd | |- ( ( M e. ZZ /\ N e. NN ) -> ( N / N ) = 1 ) |
| 52 | 51 | oveq2d | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( M / N ) + ( N / N ) ) = ( ( M / N ) + 1 ) ) |
| 53 | 50 52 | eqtrd | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( M + 1 ) / N ) + ( ( N - 1 ) / N ) ) = ( ( M / N ) + 1 ) ) |
| 54 | 53 | fveq2d | |- ( ( M e. ZZ /\ N e. NN ) -> ( |_ ` ( ( ( M + 1 ) / N ) + ( ( N - 1 ) / N ) ) ) = ( |_ ` ( ( M / N ) + 1 ) ) ) |
| 55 | 54 | adantr | |- ( ( ( M e. ZZ /\ N e. NN ) /\ N || ( M + 1 ) ) -> ( |_ ` ( ( ( M + 1 ) / N ) + ( ( N - 1 ) / N ) ) ) = ( |_ ` ( ( M / N ) + 1 ) ) ) |
| 56 | zre | |- ( M e. ZZ -> M e. RR ) |
|
| 57 | nndivre | |- ( ( M e. RR /\ N e. NN ) -> ( M / N ) e. RR ) |
|
| 58 | 56 57 | sylan | |- ( ( M e. ZZ /\ N e. NN ) -> ( M / N ) e. RR ) |
| 59 | 1z | |- 1 e. ZZ |
|
| 60 | fladdz | |- ( ( ( M / N ) e. RR /\ 1 e. ZZ ) -> ( |_ ` ( ( M / N ) + 1 ) ) = ( ( |_ ` ( M / N ) ) + 1 ) ) |
|
| 61 | 58 59 60 | sylancl | |- ( ( M e. ZZ /\ N e. NN ) -> ( |_ ` ( ( M / N ) + 1 ) ) = ( ( |_ ` ( M / N ) ) + 1 ) ) |
| 62 | 61 | adantr | |- ( ( ( M e. ZZ /\ N e. NN ) /\ N || ( M + 1 ) ) -> ( |_ ` ( ( M / N ) + 1 ) ) = ( ( |_ ` ( M / N ) ) + 1 ) ) |
| 63 | 34 55 62 | 3eqtrrd | |- ( ( ( M e. ZZ /\ N e. NN ) /\ N || ( M + 1 ) ) -> ( ( |_ ` ( M / N ) ) + 1 ) = ( |_ ` ( ( M + 1 ) / N ) ) ) |
| 64 | zre | |- ( ( M + 1 ) e. ZZ -> ( M + 1 ) e. RR ) |
|
| 65 | 3 64 | syl | |- ( M e. ZZ -> ( M + 1 ) e. RR ) |
| 66 | nndivre | |- ( ( ( M + 1 ) e. RR /\ N e. NN ) -> ( ( M + 1 ) / N ) e. RR ) |
|
| 67 | 65 66 | sylan | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( M + 1 ) / N ) e. RR ) |
| 68 | 67 | flcld | |- ( ( M e. ZZ /\ N e. NN ) -> ( |_ ` ( ( M + 1 ) / N ) ) e. ZZ ) |
| 69 | 68 | zcnd | |- ( ( M e. ZZ /\ N e. NN ) -> ( |_ ` ( ( M + 1 ) / N ) ) e. CC ) |
| 70 | 58 | flcld | |- ( ( M e. ZZ /\ N e. NN ) -> ( |_ ` ( M / N ) ) e. ZZ ) |
| 71 | 70 | zcnd | |- ( ( M e. ZZ /\ N e. NN ) -> ( |_ ` ( M / N ) ) e. CC ) |
| 72 | 69 71 38 | subaddd | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( |_ ` ( ( M + 1 ) / N ) ) - ( |_ ` ( M / N ) ) ) = 1 <-> ( ( |_ ` ( M / N ) ) + 1 ) = ( |_ ` ( ( M + 1 ) / N ) ) ) ) |
| 73 | 72 | adantr | |- ( ( ( M e. ZZ /\ N e. NN ) /\ N || ( M + 1 ) ) -> ( ( ( |_ ` ( ( M + 1 ) / N ) ) - ( |_ ` ( M / N ) ) ) = 1 <-> ( ( |_ ` ( M / N ) ) + 1 ) = ( |_ ` ( ( M + 1 ) / N ) ) ) ) |
| 74 | 63 73 | mpbird | |- ( ( ( M e. ZZ /\ N e. NN ) /\ N || ( M + 1 ) ) -> ( ( |_ ` ( ( M + 1 ) / N ) ) - ( |_ ` ( M / N ) ) ) = 1 ) |
| 75 | iftrue | |- ( N || ( M + 1 ) -> if ( N || ( M + 1 ) , 1 , 0 ) = 1 ) |
|
| 76 | 75 | adantl | |- ( ( ( M e. ZZ /\ N e. NN ) /\ N || ( M + 1 ) ) -> if ( N || ( M + 1 ) , 1 , 0 ) = 1 ) |
| 77 | 74 76 | eqtr4d | |- ( ( ( M e. ZZ /\ N e. NN ) /\ N || ( M + 1 ) ) -> ( ( |_ ` ( ( M + 1 ) / N ) ) - ( |_ ` ( M / N ) ) ) = if ( N || ( M + 1 ) , 1 , 0 ) ) |
| 78 | zmodcl | |- ( ( ( M + 1 ) e. ZZ /\ N e. NN ) -> ( ( M + 1 ) mod N ) e. NN0 ) |
|
| 79 | 3 78 | sylan | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( M + 1 ) mod N ) e. NN0 ) |
| 80 | 79 | nn0red | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( M + 1 ) mod N ) e. RR ) |
| 81 | resubcl | |- ( ( ( ( M + 1 ) mod N ) e. RR /\ 1 e. RR ) -> ( ( ( M + 1 ) mod N ) - 1 ) e. RR ) |
|
| 82 | 80 22 81 | sylancl | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( M + 1 ) mod N ) - 1 ) e. RR ) |
| 83 | 82 | adantr | |- ( ( ( M e. ZZ /\ N e. NN ) /\ -. N || ( M + 1 ) ) -> ( ( ( M + 1 ) mod N ) - 1 ) e. RR ) |
| 84 | elnn0 | |- ( ( ( M + 1 ) mod N ) e. NN0 <-> ( ( ( M + 1 ) mod N ) e. NN \/ ( ( M + 1 ) mod N ) = 0 ) ) |
|
| 85 | 79 84 | sylib | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( M + 1 ) mod N ) e. NN \/ ( ( M + 1 ) mod N ) = 0 ) ) |
| 86 | 85 | ord | |- ( ( M e. ZZ /\ N e. NN ) -> ( -. ( ( M + 1 ) mod N ) e. NN -> ( ( M + 1 ) mod N ) = 0 ) ) |
| 87 | id | |- ( N e. NN -> N e. NN ) |
|
| 88 | dvdsval3 | |- ( ( N e. NN /\ ( M + 1 ) e. ZZ ) -> ( N || ( M + 1 ) <-> ( ( M + 1 ) mod N ) = 0 ) ) |
|
| 89 | 87 3 88 | syl2anr | |- ( ( M e. ZZ /\ N e. NN ) -> ( N || ( M + 1 ) <-> ( ( M + 1 ) mod N ) = 0 ) ) |
| 90 | 86 89 | sylibrd | |- ( ( M e. ZZ /\ N e. NN ) -> ( -. ( ( M + 1 ) mod N ) e. NN -> N || ( M + 1 ) ) ) |
| 91 | 90 | con1d | |- ( ( M e. ZZ /\ N e. NN ) -> ( -. N || ( M + 1 ) -> ( ( M + 1 ) mod N ) e. NN ) ) |
| 92 | 91 | imp | |- ( ( ( M e. ZZ /\ N e. NN ) /\ -. N || ( M + 1 ) ) -> ( ( M + 1 ) mod N ) e. NN ) |
| 93 | nnm1nn0 | |- ( ( ( M + 1 ) mod N ) e. NN -> ( ( ( M + 1 ) mod N ) - 1 ) e. NN0 ) |
|
| 94 | 92 93 | syl | |- ( ( ( M e. ZZ /\ N e. NN ) /\ -. N || ( M + 1 ) ) -> ( ( ( M + 1 ) mod N ) - 1 ) e. NN0 ) |
| 95 | 94 | nn0ge0d | |- ( ( ( M e. ZZ /\ N e. NN ) /\ -. N || ( M + 1 ) ) -> 0 <_ ( ( ( M + 1 ) mod N ) - 1 ) ) |
| 96 | 13 14 | jca | |- ( N e. NN -> ( N e. RR /\ 0 < N ) ) |
| 97 | 96 | ad2antlr | |- ( ( ( M e. ZZ /\ N e. NN ) /\ -. N || ( M + 1 ) ) -> ( N e. RR /\ 0 < N ) ) |
| 98 | divge0 | |- ( ( ( ( ( ( M + 1 ) mod N ) - 1 ) e. RR /\ 0 <_ ( ( ( M + 1 ) mod N ) - 1 ) ) /\ ( N e. RR /\ 0 < N ) ) -> 0 <_ ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) ) |
|
| 99 | 83 95 97 98 | syl21anc | |- ( ( ( M e. ZZ /\ N e. NN ) /\ -. N || ( M + 1 ) ) -> 0 <_ ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) ) |
| 100 | 13 | adantl | |- ( ( M e. ZZ /\ N e. NN ) -> N e. RR ) |
| 101 | 80 | ltm1d | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( M + 1 ) mod N ) - 1 ) < ( ( M + 1 ) mod N ) ) |
| 102 | nnrp | |- ( N e. NN -> N e. RR+ ) |
|
| 103 | modlt | |- ( ( ( M + 1 ) e. RR /\ N e. RR+ ) -> ( ( M + 1 ) mod N ) < N ) |
|
| 104 | 65 102 103 | syl2an | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( M + 1 ) mod N ) < N ) |
| 105 | 82 80 100 101 104 | lttrd | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( M + 1 ) mod N ) - 1 ) < N ) |
| 106 | 39 | mulridd | |- ( ( M e. ZZ /\ N e. NN ) -> ( N x. 1 ) = N ) |
| 107 | 105 106 | breqtrrd | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( M + 1 ) mod N ) - 1 ) < ( N x. 1 ) ) |
| 108 | 22 | a1i | |- ( ( M e. ZZ /\ N e. NN ) -> 1 e. RR ) |
| 109 | 14 | adantl | |- ( ( M e. ZZ /\ N e. NN ) -> 0 < N ) |
| 110 | ltdivmul | |- ( ( ( ( ( M + 1 ) mod N ) - 1 ) e. RR /\ 1 e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) < 1 <-> ( ( ( M + 1 ) mod N ) - 1 ) < ( N x. 1 ) ) ) |
|
| 111 | 82 108 100 109 110 | syl112anc | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) < 1 <-> ( ( ( M + 1 ) mod N ) - 1 ) < ( N x. 1 ) ) ) |
| 112 | 107 111 | mpbird | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) < 1 ) |
| 113 | 112 | adantr | |- ( ( ( M e. ZZ /\ N e. NN ) /\ -. N || ( M + 1 ) ) -> ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) < 1 ) |
| 114 | nndivre | |- ( ( ( ( ( M + 1 ) mod N ) - 1 ) e. RR /\ N e. NN ) -> ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) e. RR ) |
|
| 115 | 82 114 | sylancom | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) e. RR ) |
| 116 | flbi2 | |- ( ( ( |_ ` ( ( M + 1 ) / N ) ) e. ZZ /\ ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) e. RR ) -> ( ( |_ ` ( ( |_ ` ( ( M + 1 ) / N ) ) + ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) ) ) = ( |_ ` ( ( M + 1 ) / N ) ) <-> ( 0 <_ ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) /\ ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) < 1 ) ) ) |
|
| 117 | 68 115 116 | syl2anc | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( |_ ` ( ( |_ ` ( ( M + 1 ) / N ) ) + ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) ) ) = ( |_ ` ( ( M + 1 ) / N ) ) <-> ( 0 <_ ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) /\ ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) < 1 ) ) ) |
| 118 | 117 | adantr | |- ( ( ( M e. ZZ /\ N e. NN ) /\ -. N || ( M + 1 ) ) -> ( ( |_ ` ( ( |_ ` ( ( M + 1 ) / N ) ) + ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) ) ) = ( |_ ` ( ( M + 1 ) / N ) ) <-> ( 0 <_ ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) /\ ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) < 1 ) ) ) |
| 119 | 99 113 118 | mpbir2and | |- ( ( ( M e. ZZ /\ N e. NN ) /\ -. N || ( M + 1 ) ) -> ( |_ ` ( ( |_ ` ( ( M + 1 ) / N ) ) + ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) ) ) = ( |_ ` ( ( M + 1 ) / N ) ) ) |
| 120 | modval | |- ( ( ( M + 1 ) e. RR /\ N e. RR+ ) -> ( ( M + 1 ) mod N ) = ( ( M + 1 ) - ( N x. ( |_ ` ( ( M + 1 ) / N ) ) ) ) ) |
|
| 121 | 65 102 120 | syl2an | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( M + 1 ) mod N ) = ( ( M + 1 ) - ( N x. ( |_ ` ( ( M + 1 ) / N ) ) ) ) ) |
| 122 | 121 | oveq1d | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( M + 1 ) mod N ) - 1 ) = ( ( ( M + 1 ) - ( N x. ( |_ ` ( ( M + 1 ) / N ) ) ) ) - 1 ) ) |
| 123 | 39 69 | mulcld | |- ( ( M e. ZZ /\ N e. NN ) -> ( N x. ( |_ ` ( ( M + 1 ) / N ) ) ) e. CC ) |
| 124 | 42 38 123 | sub32d | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( M + 1 ) - 1 ) - ( N x. ( |_ ` ( ( M + 1 ) / N ) ) ) ) = ( ( ( M + 1 ) - ( N x. ( |_ ` ( ( M + 1 ) / N ) ) ) ) - 1 ) ) |
| 125 | 122 124 | eqtr4d | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( M + 1 ) mod N ) - 1 ) = ( ( ( M + 1 ) - 1 ) - ( N x. ( |_ ` ( ( M + 1 ) / N ) ) ) ) ) |
| 126 | pncan | |- ( ( M e. CC /\ 1 e. CC ) -> ( ( M + 1 ) - 1 ) = M ) |
|
| 127 | 36 37 126 | sylancl | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( M + 1 ) - 1 ) = M ) |
| 128 | 127 | oveq1d | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( M + 1 ) - 1 ) - ( N x. ( |_ ` ( ( M + 1 ) / N ) ) ) ) = ( M - ( N x. ( |_ ` ( ( M + 1 ) / N ) ) ) ) ) |
| 129 | 125 128 | eqtrd | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( M + 1 ) mod N ) - 1 ) = ( M - ( N x. ( |_ ` ( ( M + 1 ) / N ) ) ) ) ) |
| 130 | 129 | oveq1d | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) = ( ( M - ( N x. ( |_ ` ( ( M + 1 ) / N ) ) ) ) / N ) ) |
| 131 | 36 123 39 46 | divsubdird | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( M - ( N x. ( |_ ` ( ( M + 1 ) / N ) ) ) ) / N ) = ( ( M / N ) - ( ( N x. ( |_ ` ( ( M + 1 ) / N ) ) ) / N ) ) ) |
| 132 | 69 39 46 | divcan3d | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( N x. ( |_ ` ( ( M + 1 ) / N ) ) ) / N ) = ( |_ ` ( ( M + 1 ) / N ) ) ) |
| 133 | 132 | oveq2d | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( M / N ) - ( ( N x. ( |_ ` ( ( M + 1 ) / N ) ) ) / N ) ) = ( ( M / N ) - ( |_ ` ( ( M + 1 ) / N ) ) ) ) |
| 134 | 130 131 133 | 3eqtrrd | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( M / N ) - ( |_ ` ( ( M + 1 ) / N ) ) ) = ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) ) |
| 135 | 58 | recnd | |- ( ( M e. ZZ /\ N e. NN ) -> ( M / N ) e. CC ) |
| 136 | 115 | recnd | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) e. CC ) |
| 137 | 135 69 136 | subaddd | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( M / N ) - ( |_ ` ( ( M + 1 ) / N ) ) ) = ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) <-> ( ( |_ ` ( ( M + 1 ) / N ) ) + ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) ) = ( M / N ) ) ) |
| 138 | 134 137 | mpbid | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( |_ ` ( ( M + 1 ) / N ) ) + ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) ) = ( M / N ) ) |
| 139 | 138 | adantr | |- ( ( ( M e. ZZ /\ N e. NN ) /\ -. N || ( M + 1 ) ) -> ( ( |_ ` ( ( M + 1 ) / N ) ) + ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) ) = ( M / N ) ) |
| 140 | 139 | fveq2d | |- ( ( ( M e. ZZ /\ N e. NN ) /\ -. N || ( M + 1 ) ) -> ( |_ ` ( ( |_ ` ( ( M + 1 ) / N ) ) + ( ( ( ( M + 1 ) mod N ) - 1 ) / N ) ) ) = ( |_ ` ( M / N ) ) ) |
| 141 | 119 140 | eqtr3d | |- ( ( ( M e. ZZ /\ N e. NN ) /\ -. N || ( M + 1 ) ) -> ( |_ ` ( ( M + 1 ) / N ) ) = ( |_ ` ( M / N ) ) ) |
| 142 | 69 71 | subeq0ad | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( ( |_ ` ( ( M + 1 ) / N ) ) - ( |_ ` ( M / N ) ) ) = 0 <-> ( |_ ` ( ( M + 1 ) / N ) ) = ( |_ ` ( M / N ) ) ) ) |
| 143 | 142 | adantr | |- ( ( ( M e. ZZ /\ N e. NN ) /\ -. N || ( M + 1 ) ) -> ( ( ( |_ ` ( ( M + 1 ) / N ) ) - ( |_ ` ( M / N ) ) ) = 0 <-> ( |_ ` ( ( M + 1 ) / N ) ) = ( |_ ` ( M / N ) ) ) ) |
| 144 | 141 143 | mpbird | |- ( ( ( M e. ZZ /\ N e. NN ) /\ -. N || ( M + 1 ) ) -> ( ( |_ ` ( ( M + 1 ) / N ) ) - ( |_ ` ( M / N ) ) ) = 0 ) |
| 145 | iffalse | |- ( -. N || ( M + 1 ) -> if ( N || ( M + 1 ) , 1 , 0 ) = 0 ) |
|
| 146 | 145 | adantl | |- ( ( ( M e. ZZ /\ N e. NN ) /\ -. N || ( M + 1 ) ) -> if ( N || ( M + 1 ) , 1 , 0 ) = 0 ) |
| 147 | 144 146 | eqtr4d | |- ( ( ( M e. ZZ /\ N e. NN ) /\ -. N || ( M + 1 ) ) -> ( ( |_ ` ( ( M + 1 ) / N ) ) - ( |_ ` ( M / N ) ) ) = if ( N || ( M + 1 ) , 1 , 0 ) ) |
| 148 | 77 147 | pm2.61dan | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( |_ ` ( ( M + 1 ) / N ) ) - ( |_ ` ( M / N ) ) ) = if ( N || ( M + 1 ) , 1 , 0 ) ) |