This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pcfac . (Contributed by Mario Carneiro, 20-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcfaclem | |- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( |_ ` ( N / ( P ^ M ) ) ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ge0 | |- ( N e. NN0 -> 0 <_ N ) |
|
| 2 | 1 | 3ad2ant1 | |- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> 0 <_ N ) |
| 3 | nn0re | |- ( N e. NN0 -> N e. RR ) |
|
| 4 | 3 | 3ad2ant1 | |- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> N e. RR ) |
| 5 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 6 | 5 | 3ad2ant3 | |- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> P e. NN ) |
| 7 | eluznn0 | |- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) ) -> M e. NN0 ) |
|
| 8 | 7 | 3adant3 | |- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> M e. NN0 ) |
| 9 | 6 8 | nnexpcld | |- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( P ^ M ) e. NN ) |
| 10 | 9 | nnred | |- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( P ^ M ) e. RR ) |
| 11 | 9 | nngt0d | |- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> 0 < ( P ^ M ) ) |
| 12 | ge0div | |- ( ( N e. RR /\ ( P ^ M ) e. RR /\ 0 < ( P ^ M ) ) -> ( 0 <_ N <-> 0 <_ ( N / ( P ^ M ) ) ) ) |
|
| 13 | 4 10 11 12 | syl3anc | |- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( 0 <_ N <-> 0 <_ ( N / ( P ^ M ) ) ) ) |
| 14 | 2 13 | mpbid | |- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> 0 <_ ( N / ( P ^ M ) ) ) |
| 15 | 8 | nn0red | |- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> M e. RR ) |
| 16 | eluzle | |- ( M e. ( ZZ>= ` N ) -> N <_ M ) |
|
| 17 | 16 | 3ad2ant2 | |- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> N <_ M ) |
| 18 | prmuz2 | |- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
|
| 19 | 18 | 3ad2ant3 | |- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> P e. ( ZZ>= ` 2 ) ) |
| 20 | bernneq3 | |- ( ( P e. ( ZZ>= ` 2 ) /\ M e. NN0 ) -> M < ( P ^ M ) ) |
|
| 21 | 19 8 20 | syl2anc | |- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> M < ( P ^ M ) ) |
| 22 | 4 15 10 17 21 | lelttrd | |- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> N < ( P ^ M ) ) |
| 23 | 9 | nncnd | |- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( P ^ M ) e. CC ) |
| 24 | 23 | mulridd | |- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( ( P ^ M ) x. 1 ) = ( P ^ M ) ) |
| 25 | 22 24 | breqtrrd | |- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> N < ( ( P ^ M ) x. 1 ) ) |
| 26 | 1red | |- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> 1 e. RR ) |
|
| 27 | ltdivmul | |- ( ( N e. RR /\ 1 e. RR /\ ( ( P ^ M ) e. RR /\ 0 < ( P ^ M ) ) ) -> ( ( N / ( P ^ M ) ) < 1 <-> N < ( ( P ^ M ) x. 1 ) ) ) |
|
| 28 | 4 26 10 11 27 | syl112anc | |- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( ( N / ( P ^ M ) ) < 1 <-> N < ( ( P ^ M ) x. 1 ) ) ) |
| 29 | 25 28 | mpbird | |- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( N / ( P ^ M ) ) < 1 ) |
| 30 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 31 | 29 30 | breqtrrdi | |- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( N / ( P ^ M ) ) < ( 0 + 1 ) ) |
| 32 | 4 9 | nndivred | |- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( N / ( P ^ M ) ) e. RR ) |
| 33 | 0z | |- 0 e. ZZ |
|
| 34 | flbi | |- ( ( ( N / ( P ^ M ) ) e. RR /\ 0 e. ZZ ) -> ( ( |_ ` ( N / ( P ^ M ) ) ) = 0 <-> ( 0 <_ ( N / ( P ^ M ) ) /\ ( N / ( P ^ M ) ) < ( 0 + 1 ) ) ) ) |
|
| 35 | 32 33 34 | sylancl | |- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( ( |_ ` ( N / ( P ^ M ) ) ) = 0 <-> ( 0 <_ ( N / ( P ^ M ) ) /\ ( N / ( P ^ M ) ) < ( 0 + 1 ) ) ) ) |
| 36 | 14 31 35 | mpbir2and | |- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( |_ ` ( N / ( P ^ M ) ) ) = 0 ) |