This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Quantification restricted to a subclass. (Contributed by NM, 11-Mar-2006) Avoid axioms. (Revised by GG, 19-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssralv | |- ( A C_ B -> ( A. x e. B ph -> A. x e. A ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss | |- ( A C_ B <-> A. x ( x e. A -> x e. B ) ) |
|
| 2 | imim1 | |- ( ( x e. A -> x e. B ) -> ( ( x e. B -> ph ) -> ( x e. A -> ph ) ) ) |
|
| 3 | 2 | al2imi | |- ( A. x ( x e. A -> x e. B ) -> ( A. x ( x e. B -> ph ) -> A. x ( x e. A -> ph ) ) ) |
| 4 | df-ral | |- ( A. x e. B ph <-> A. x ( x e. B -> ph ) ) |
|
| 5 | df-ral | |- ( A. x e. A ph <-> A. x ( x e. A -> ph ) ) |
|
| 6 | 3 4 5 | 3imtr4g | |- ( A. x ( x e. A -> x e. B ) -> ( A. x e. B ph -> A. x e. A ph ) ) |
| 7 | 1 6 | sylbi | |- ( A C_ B -> ( A. x e. B ph -> A. x e. A ph ) ) |