This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The factorial of a successor. (Contributed by NM, 2-Dec-2004) (Revised by Mario Carneiro, 13-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | facp1 | |- ( N e. NN0 -> ( ! ` ( N + 1 ) ) = ( ( ! ` N ) x. ( N + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | |- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
|
| 2 | peano2nn | |- ( N e. NN -> ( N + 1 ) e. NN ) |
|
| 3 | facnn | |- ( ( N + 1 ) e. NN -> ( ! ` ( N + 1 ) ) = ( seq 1 ( x. , _I ) ` ( N + 1 ) ) ) |
|
| 4 | 2 3 | syl | |- ( N e. NN -> ( ! ` ( N + 1 ) ) = ( seq 1 ( x. , _I ) ` ( N + 1 ) ) ) |
| 5 | ovex | |- ( N + 1 ) e. _V |
|
| 6 | fvi | |- ( ( N + 1 ) e. _V -> ( _I ` ( N + 1 ) ) = ( N + 1 ) ) |
|
| 7 | 5 6 | ax-mp | |- ( _I ` ( N + 1 ) ) = ( N + 1 ) |
| 8 | 7 | oveq2i | |- ( ( seq 1 ( x. , _I ) ` N ) x. ( _I ` ( N + 1 ) ) ) = ( ( seq 1 ( x. , _I ) ` N ) x. ( N + 1 ) ) |
| 9 | seqp1 | |- ( N e. ( ZZ>= ` 1 ) -> ( seq 1 ( x. , _I ) ` ( N + 1 ) ) = ( ( seq 1 ( x. , _I ) ` N ) x. ( _I ` ( N + 1 ) ) ) ) |
|
| 10 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 11 | 9 10 | eleq2s | |- ( N e. NN -> ( seq 1 ( x. , _I ) ` ( N + 1 ) ) = ( ( seq 1 ( x. , _I ) ` N ) x. ( _I ` ( N + 1 ) ) ) ) |
| 12 | facnn | |- ( N e. NN -> ( ! ` N ) = ( seq 1 ( x. , _I ) ` N ) ) |
|
| 13 | 12 | oveq1d | |- ( N e. NN -> ( ( ! ` N ) x. ( N + 1 ) ) = ( ( seq 1 ( x. , _I ) ` N ) x. ( N + 1 ) ) ) |
| 14 | 8 11 13 | 3eqtr4a | |- ( N e. NN -> ( seq 1 ( x. , _I ) ` ( N + 1 ) ) = ( ( ! ` N ) x. ( N + 1 ) ) ) |
| 15 | 4 14 | eqtrd | |- ( N e. NN -> ( ! ` ( N + 1 ) ) = ( ( ! ` N ) x. ( N + 1 ) ) ) |
| 16 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 17 | 16 | fveq2i | |- ( ! ` ( 0 + 1 ) ) = ( ! ` 1 ) |
| 18 | fac1 | |- ( ! ` 1 ) = 1 |
|
| 19 | 17 18 | eqtri | |- ( ! ` ( 0 + 1 ) ) = 1 |
| 20 | fvoveq1 | |- ( N = 0 -> ( ! ` ( N + 1 ) ) = ( ! ` ( 0 + 1 ) ) ) |
|
| 21 | fveq2 | |- ( N = 0 -> ( ! ` N ) = ( ! ` 0 ) ) |
|
| 22 | oveq1 | |- ( N = 0 -> ( N + 1 ) = ( 0 + 1 ) ) |
|
| 23 | 21 22 | oveq12d | |- ( N = 0 -> ( ( ! ` N ) x. ( N + 1 ) ) = ( ( ! ` 0 ) x. ( 0 + 1 ) ) ) |
| 24 | fac0 | |- ( ! ` 0 ) = 1 |
|
| 25 | 24 16 | oveq12i | |- ( ( ! ` 0 ) x. ( 0 + 1 ) ) = ( 1 x. 1 ) |
| 26 | 1t1e1 | |- ( 1 x. 1 ) = 1 |
|
| 27 | 25 26 | eqtri | |- ( ( ! ` 0 ) x. ( 0 + 1 ) ) = 1 |
| 28 | 23 27 | eqtrdi | |- ( N = 0 -> ( ( ! ` N ) x. ( N + 1 ) ) = 1 ) |
| 29 | 19 20 28 | 3eqtr4a | |- ( N = 0 -> ( ! ` ( N + 1 ) ) = ( ( ! ` N ) x. ( N + 1 ) ) ) |
| 30 | 15 29 | jaoi | |- ( ( N e. NN \/ N = 0 ) -> ( ! ` ( N + 1 ) ) = ( ( ! ` N ) x. ( N + 1 ) ) ) |
| 31 | 1 30 | sylbi | |- ( N e. NN0 -> ( ! ` ( N + 1 ) ) = ( ( ! ` N ) x. ( N + 1 ) ) ) |