This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A corollary of bernneq . (Contributed by Mario Carneiro, 11-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bernneq3 | |- ( ( P e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> N < ( P ^ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re | |- ( N e. NN0 -> N e. RR ) |
|
| 2 | 1 | adantl | |- ( ( P e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> N e. RR ) |
| 3 | peano2re | |- ( N e. RR -> ( N + 1 ) e. RR ) |
|
| 4 | 2 3 | syl | |- ( ( P e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( N + 1 ) e. RR ) |
| 5 | eluzelre | |- ( P e. ( ZZ>= ` 2 ) -> P e. RR ) |
|
| 6 | reexpcl | |- ( ( P e. RR /\ N e. NN0 ) -> ( P ^ N ) e. RR ) |
|
| 7 | 5 6 | sylan | |- ( ( P e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( P ^ N ) e. RR ) |
| 8 | 2 | ltp1d | |- ( ( P e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> N < ( N + 1 ) ) |
| 9 | uz2m1nn | |- ( P e. ( ZZ>= ` 2 ) -> ( P - 1 ) e. NN ) |
|
| 10 | 9 | adantr | |- ( ( P e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( P - 1 ) e. NN ) |
| 11 | 10 | nnred | |- ( ( P e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( P - 1 ) e. RR ) |
| 12 | 11 2 | remulcld | |- ( ( P e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( ( P - 1 ) x. N ) e. RR ) |
| 13 | peano2re | |- ( ( ( P - 1 ) x. N ) e. RR -> ( ( ( P - 1 ) x. N ) + 1 ) e. RR ) |
|
| 14 | 12 13 | syl | |- ( ( P e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( ( ( P - 1 ) x. N ) + 1 ) e. RR ) |
| 15 | 1red | |- ( ( P e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> 1 e. RR ) |
|
| 16 | nn0ge0 | |- ( N e. NN0 -> 0 <_ N ) |
|
| 17 | 16 | adantl | |- ( ( P e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> 0 <_ N ) |
| 18 | 10 | nnge1d | |- ( ( P e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> 1 <_ ( P - 1 ) ) |
| 19 | 2 11 17 18 | lemulge12d | |- ( ( P e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> N <_ ( ( P - 1 ) x. N ) ) |
| 20 | 2 12 15 19 | leadd1dd | |- ( ( P e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( N + 1 ) <_ ( ( ( P - 1 ) x. N ) + 1 ) ) |
| 21 | 5 | adantr | |- ( ( P e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> P e. RR ) |
| 22 | simpr | |- ( ( P e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> N e. NN0 ) |
|
| 23 | eluzge2nn0 | |- ( P e. ( ZZ>= ` 2 ) -> P e. NN0 ) |
|
| 24 | nn0ge0 | |- ( P e. NN0 -> 0 <_ P ) |
|
| 25 | 23 24 | syl | |- ( P e. ( ZZ>= ` 2 ) -> 0 <_ P ) |
| 26 | 25 | adantr | |- ( ( P e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> 0 <_ P ) |
| 27 | bernneq2 | |- ( ( P e. RR /\ N e. NN0 /\ 0 <_ P ) -> ( ( ( P - 1 ) x. N ) + 1 ) <_ ( P ^ N ) ) |
|
| 28 | 21 22 26 27 | syl3anc | |- ( ( P e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( ( ( P - 1 ) x. N ) + 1 ) <_ ( P ^ N ) ) |
| 29 | 4 14 7 20 28 | letrd | |- ( ( P e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( N + 1 ) <_ ( P ^ N ) ) |
| 30 | 2 4 7 8 29 | ltletrd | |- ( ( P e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> N < ( P ^ N ) ) |