This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The factorial of 0. (Contributed by NM, 2-Dec-2004) (Revised by Mario Carneiro, 13-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fac0 | |- ( ! ` 0 ) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex | |- 0 e. _V |
|
| 2 | 1 | a1i | |- ( T. -> 0 e. _V ) |
| 3 | 1ex | |- 1 e. _V |
|
| 4 | 3 | a1i | |- ( T. -> 1 e. _V ) |
| 5 | df-fac | |- ! = ( { <. 0 , 1 >. } u. seq 1 ( x. , _I ) ) |
|
| 6 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 7 | dfn2 | |- NN = ( NN0 \ { 0 } ) |
|
| 8 | 6 7 | eqtr3i | |- ( ZZ>= ` 1 ) = ( NN0 \ { 0 } ) |
| 9 | 8 | reseq2i | |- ( seq 1 ( x. , _I ) |` ( ZZ>= ` 1 ) ) = ( seq 1 ( x. , _I ) |` ( NN0 \ { 0 } ) ) |
| 10 | 1z | |- 1 e. ZZ |
|
| 11 | seqfn | |- ( 1 e. ZZ -> seq 1 ( x. , _I ) Fn ( ZZ>= ` 1 ) ) |
|
| 12 | fnresdm | |- ( seq 1 ( x. , _I ) Fn ( ZZ>= ` 1 ) -> ( seq 1 ( x. , _I ) |` ( ZZ>= ` 1 ) ) = seq 1 ( x. , _I ) ) |
|
| 13 | 10 11 12 | mp2b | |- ( seq 1 ( x. , _I ) |` ( ZZ>= ` 1 ) ) = seq 1 ( x. , _I ) |
| 14 | 9 13 | eqtr3i | |- ( seq 1 ( x. , _I ) |` ( NN0 \ { 0 } ) ) = seq 1 ( x. , _I ) |
| 15 | 14 | uneq2i | |- ( { <. 0 , 1 >. } u. ( seq 1 ( x. , _I ) |` ( NN0 \ { 0 } ) ) ) = ( { <. 0 , 1 >. } u. seq 1 ( x. , _I ) ) |
| 16 | 5 15 | eqtr4i | |- ! = ( { <. 0 , 1 >. } u. ( seq 1 ( x. , _I ) |` ( NN0 \ { 0 } ) ) ) |
| 17 | 2 4 16 | fvsnun1 | |- ( T. -> ( ! ` 0 ) = 1 ) |
| 18 | 17 | mptru | |- ( ! ` 0 ) = 1 |