This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the factorial function. (Contributed by NM, 2-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | faccl | |- ( N e. NN0 -> ( ! ` N ) e. NN ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( j = 0 -> ( ! ` j ) = ( ! ` 0 ) ) |
|
| 2 | 1 | eleq1d | |- ( j = 0 -> ( ( ! ` j ) e. NN <-> ( ! ` 0 ) e. NN ) ) |
| 3 | fveq2 | |- ( j = k -> ( ! ` j ) = ( ! ` k ) ) |
|
| 4 | 3 | eleq1d | |- ( j = k -> ( ( ! ` j ) e. NN <-> ( ! ` k ) e. NN ) ) |
| 5 | fveq2 | |- ( j = ( k + 1 ) -> ( ! ` j ) = ( ! ` ( k + 1 ) ) ) |
|
| 6 | 5 | eleq1d | |- ( j = ( k + 1 ) -> ( ( ! ` j ) e. NN <-> ( ! ` ( k + 1 ) ) e. NN ) ) |
| 7 | fveq2 | |- ( j = N -> ( ! ` j ) = ( ! ` N ) ) |
|
| 8 | 7 | eleq1d | |- ( j = N -> ( ( ! ` j ) e. NN <-> ( ! ` N ) e. NN ) ) |
| 9 | fac0 | |- ( ! ` 0 ) = 1 |
|
| 10 | 1nn | |- 1 e. NN |
|
| 11 | 9 10 | eqeltri | |- ( ! ` 0 ) e. NN |
| 12 | facp1 | |- ( k e. NN0 -> ( ! ` ( k + 1 ) ) = ( ( ! ` k ) x. ( k + 1 ) ) ) |
|
| 13 | 12 | adantl | |- ( ( ( ! ` k ) e. NN /\ k e. NN0 ) -> ( ! ` ( k + 1 ) ) = ( ( ! ` k ) x. ( k + 1 ) ) ) |
| 14 | nn0p1nn | |- ( k e. NN0 -> ( k + 1 ) e. NN ) |
|
| 15 | nnmulcl | |- ( ( ( ! ` k ) e. NN /\ ( k + 1 ) e. NN ) -> ( ( ! ` k ) x. ( k + 1 ) ) e. NN ) |
|
| 16 | 14 15 | sylan2 | |- ( ( ( ! ` k ) e. NN /\ k e. NN0 ) -> ( ( ! ` k ) x. ( k + 1 ) ) e. NN ) |
| 17 | 13 16 | eqeltrd | |- ( ( ( ! ` k ) e. NN /\ k e. NN0 ) -> ( ! ` ( k + 1 ) ) e. NN ) |
| 18 | 17 | expcom | |- ( k e. NN0 -> ( ( ! ` k ) e. NN -> ( ! ` ( k + 1 ) ) e. NN ) ) |
| 19 | 2 4 6 8 11 18 | nn0ind | |- ( N e. NN0 -> ( ! ` N ) e. NN ) |