This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Calculate the prime count of a binomial coefficient. (Contributed by Mario Carneiro, 11-Mar-2014) (Revised by Mario Carneiro, 21-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcbc | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( P pCnt ( N _C K ) ) = sum_ k e. ( 1 ... N ) ( ( |_ ` ( N / ( P ^ k ) ) ) - ( ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) + ( |_ ` ( K / ( P ^ k ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> P e. Prime ) |
|
| 2 | nnnn0 | |- ( N e. NN -> N e. NN0 ) |
|
| 3 | 2 | 3ad2ant1 | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> N e. NN0 ) |
| 4 | 3 | faccld | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( ! ` N ) e. NN ) |
| 5 | 4 | nnzd | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( ! ` N ) e. ZZ ) |
| 6 | 4 | nnne0d | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( ! ` N ) =/= 0 ) |
| 7 | fznn0sub | |- ( K e. ( 0 ... N ) -> ( N - K ) e. NN0 ) |
|
| 8 | 7 | 3ad2ant2 | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( N - K ) e. NN0 ) |
| 9 | 8 | faccld | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( ! ` ( N - K ) ) e. NN ) |
| 10 | elfznn0 | |- ( K e. ( 0 ... N ) -> K e. NN0 ) |
|
| 11 | 10 | 3ad2ant2 | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> K e. NN0 ) |
| 12 | 11 | faccld | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( ! ` K ) e. NN ) |
| 13 | 9 12 | nnmulcld | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. NN ) |
| 14 | pcdiv | |- ( ( P e. Prime /\ ( ( ! ` N ) e. ZZ /\ ( ! ` N ) =/= 0 ) /\ ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. NN ) -> ( P pCnt ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) = ( ( P pCnt ( ! ` N ) ) - ( P pCnt ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) ) |
|
| 15 | 1 5 6 13 14 | syl121anc | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( P pCnt ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) = ( ( P pCnt ( ! ` N ) ) - ( P pCnt ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) ) |
| 16 | bcval2 | |- ( K e. ( 0 ... N ) -> ( N _C K ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) |
|
| 17 | 16 | 3ad2ant2 | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( N _C K ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) |
| 18 | 17 | oveq2d | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( P pCnt ( N _C K ) ) = ( P pCnt ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) ) |
| 19 | fzfid | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( 1 ... N ) e. Fin ) |
|
| 20 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 21 | 20 | 3ad2ant1 | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> N e. RR ) |
| 22 | 21 | adantr | |- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> N e. RR ) |
| 23 | simpl3 | |- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> P e. Prime ) |
|
| 24 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 25 | 23 24 | syl | |- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> P e. NN ) |
| 26 | elfznn | |- ( k e. ( 1 ... N ) -> k e. NN ) |
|
| 27 | 26 | nnnn0d | |- ( k e. ( 1 ... N ) -> k e. NN0 ) |
| 28 | 27 | adantl | |- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> k e. NN0 ) |
| 29 | 25 28 | nnexpcld | |- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> ( P ^ k ) e. NN ) |
| 30 | 22 29 | nndivred | |- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> ( N / ( P ^ k ) ) e. RR ) |
| 31 | 30 | flcld | |- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> ( |_ ` ( N / ( P ^ k ) ) ) e. ZZ ) |
| 32 | 31 | zcnd | |- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> ( |_ ` ( N / ( P ^ k ) ) ) e. CC ) |
| 33 | 11 | nn0red | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> K e. RR ) |
| 34 | 21 33 | resubcld | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( N - K ) e. RR ) |
| 35 | 34 | adantr | |- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> ( N - K ) e. RR ) |
| 36 | 35 29 | nndivred | |- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> ( ( N - K ) / ( P ^ k ) ) e. RR ) |
| 37 | 36 | flcld | |- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) e. ZZ ) |
| 38 | 37 | zcnd | |- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) e. CC ) |
| 39 | 33 | adantr | |- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> K e. RR ) |
| 40 | 39 29 | nndivred | |- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> ( K / ( P ^ k ) ) e. RR ) |
| 41 | 40 | flcld | |- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> ( |_ ` ( K / ( P ^ k ) ) ) e. ZZ ) |
| 42 | 41 | zcnd | |- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> ( |_ ` ( K / ( P ^ k ) ) ) e. CC ) |
| 43 | 38 42 | addcld | |- ( ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) /\ k e. ( 1 ... N ) ) -> ( ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) + ( |_ ` ( K / ( P ^ k ) ) ) ) e. CC ) |
| 44 | 19 32 43 | fsumsub | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> sum_ k e. ( 1 ... N ) ( ( |_ ` ( N / ( P ^ k ) ) ) - ( ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) + ( |_ ` ( K / ( P ^ k ) ) ) ) ) = ( sum_ k e. ( 1 ... N ) ( |_ ` ( N / ( P ^ k ) ) ) - sum_ k e. ( 1 ... N ) ( ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) + ( |_ ` ( K / ( P ^ k ) ) ) ) ) ) |
| 45 | 3 | nn0zd | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> N e. ZZ ) |
| 46 | uzid | |- ( N e. ZZ -> N e. ( ZZ>= ` N ) ) |
|
| 47 | 45 46 | syl | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> N e. ( ZZ>= ` N ) ) |
| 48 | pcfac | |- ( ( N e. NN0 /\ N e. ( ZZ>= ` N ) /\ P e. Prime ) -> ( P pCnt ( ! ` N ) ) = sum_ k e. ( 1 ... N ) ( |_ ` ( N / ( P ^ k ) ) ) ) |
|
| 49 | 3 47 1 48 | syl3anc | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( P pCnt ( ! ` N ) ) = sum_ k e. ( 1 ... N ) ( |_ ` ( N / ( P ^ k ) ) ) ) |
| 50 | 11 | nn0ge0d | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> 0 <_ K ) |
| 51 | 21 33 | subge02d | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( 0 <_ K <-> ( N - K ) <_ N ) ) |
| 52 | 50 51 | mpbid | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( N - K ) <_ N ) |
| 53 | 11 | nn0zd | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> K e. ZZ ) |
| 54 | 45 53 | zsubcld | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( N - K ) e. ZZ ) |
| 55 | eluz | |- ( ( ( N - K ) e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` ( N - K ) ) <-> ( N - K ) <_ N ) ) |
|
| 56 | 54 45 55 | syl2anc | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( N e. ( ZZ>= ` ( N - K ) ) <-> ( N - K ) <_ N ) ) |
| 57 | 52 56 | mpbird | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> N e. ( ZZ>= ` ( N - K ) ) ) |
| 58 | pcfac | |- ( ( ( N - K ) e. NN0 /\ N e. ( ZZ>= ` ( N - K ) ) /\ P e. Prime ) -> ( P pCnt ( ! ` ( N - K ) ) ) = sum_ k e. ( 1 ... N ) ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) ) |
|
| 59 | 8 57 1 58 | syl3anc | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( P pCnt ( ! ` ( N - K ) ) ) = sum_ k e. ( 1 ... N ) ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) ) |
| 60 | elfzuz3 | |- ( K e. ( 0 ... N ) -> N e. ( ZZ>= ` K ) ) |
|
| 61 | 60 | 3ad2ant2 | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> N e. ( ZZ>= ` K ) ) |
| 62 | pcfac | |- ( ( K e. NN0 /\ N e. ( ZZ>= ` K ) /\ P e. Prime ) -> ( P pCnt ( ! ` K ) ) = sum_ k e. ( 1 ... N ) ( |_ ` ( K / ( P ^ k ) ) ) ) |
|
| 63 | 11 61 1 62 | syl3anc | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( P pCnt ( ! ` K ) ) = sum_ k e. ( 1 ... N ) ( |_ ` ( K / ( P ^ k ) ) ) ) |
| 64 | 59 63 | oveq12d | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( ( P pCnt ( ! ` ( N - K ) ) ) + ( P pCnt ( ! ` K ) ) ) = ( sum_ k e. ( 1 ... N ) ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) + sum_ k e. ( 1 ... N ) ( |_ ` ( K / ( P ^ k ) ) ) ) ) |
| 65 | 9 | nnzd | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( ! ` ( N - K ) ) e. ZZ ) |
| 66 | 9 | nnne0d | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( ! ` ( N - K ) ) =/= 0 ) |
| 67 | 12 | nnzd | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( ! ` K ) e. ZZ ) |
| 68 | 12 | nnne0d | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( ! ` K ) =/= 0 ) |
| 69 | pcmul | |- ( ( P e. Prime /\ ( ( ! ` ( N - K ) ) e. ZZ /\ ( ! ` ( N - K ) ) =/= 0 ) /\ ( ( ! ` K ) e. ZZ /\ ( ! ` K ) =/= 0 ) ) -> ( P pCnt ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) = ( ( P pCnt ( ! ` ( N - K ) ) ) + ( P pCnt ( ! ` K ) ) ) ) |
|
| 70 | 1 65 66 67 68 69 | syl122anc | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( P pCnt ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) = ( ( P pCnt ( ! ` ( N - K ) ) ) + ( P pCnt ( ! ` K ) ) ) ) |
| 71 | 19 38 42 | fsumadd | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> sum_ k e. ( 1 ... N ) ( ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) + ( |_ ` ( K / ( P ^ k ) ) ) ) = ( sum_ k e. ( 1 ... N ) ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) + sum_ k e. ( 1 ... N ) ( |_ ` ( K / ( P ^ k ) ) ) ) ) |
| 72 | 64 70 71 | 3eqtr4d | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( P pCnt ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) = sum_ k e. ( 1 ... N ) ( ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) + ( |_ ` ( K / ( P ^ k ) ) ) ) ) |
| 73 | 49 72 | oveq12d | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( ( P pCnt ( ! ` N ) ) - ( P pCnt ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) = ( sum_ k e. ( 1 ... N ) ( |_ ` ( N / ( P ^ k ) ) ) - sum_ k e. ( 1 ... N ) ( ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) + ( |_ ` ( K / ( P ^ k ) ) ) ) ) ) |
| 74 | 44 73 | eqtr4d | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> sum_ k e. ( 1 ... N ) ( ( |_ ` ( N / ( P ^ k ) ) ) - ( ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) + ( |_ ` ( K / ( P ^ k ) ) ) ) ) = ( ( P pCnt ( ! ` N ) ) - ( P pCnt ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) ) |
| 75 | 15 18 74 | 3eqtr4d | |- ( ( N e. NN /\ K e. ( 0 ... N ) /\ P e. Prime ) -> ( P pCnt ( N _C K ) ) = sum_ k e. ( 1 ... N ) ( ( |_ ` ( N / ( P ^ k ) ) ) - ( ( |_ ` ( ( N - K ) / ( P ^ k ) ) ) + ( |_ ` ( K / ( P ^ k ) ) ) ) ) ) |