This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Calculate the prime count of a factorial. (Contributed by Mario Carneiro, 11-Mar-2014) (Revised by Mario Carneiro, 21-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcfac | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → ( 𝑃 pCnt ( ! ‘ 𝑁 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑀 ) ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝑥 = 0 → ( ℤ≥ ‘ 𝑥 ) = ( ℤ≥ ‘ 0 ) ) | |
| 2 | fveq2 | ⊢ ( 𝑥 = 0 → ( ! ‘ 𝑥 ) = ( ! ‘ 0 ) ) | |
| 3 | 2 | oveq2d | ⊢ ( 𝑥 = 0 → ( 𝑃 pCnt ( ! ‘ 𝑥 ) ) = ( 𝑃 pCnt ( ! ‘ 0 ) ) ) |
| 4 | fvoveq1 | ⊢ ( 𝑥 = 0 → ( ⌊ ‘ ( 𝑥 / ( 𝑃 ↑ 𝑘 ) ) ) = ( ⌊ ‘ ( 0 / ( 𝑃 ↑ 𝑘 ) ) ) ) | |
| 5 | 4 | sumeq2sdv | ⊢ ( 𝑥 = 0 → Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑥 / ( 𝑃 ↑ 𝑘 ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 0 / ( 𝑃 ↑ 𝑘 ) ) ) ) |
| 6 | 3 5 | eqeq12d | ⊢ ( 𝑥 = 0 → ( ( 𝑃 pCnt ( ! ‘ 𝑥 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑥 / ( 𝑃 ↑ 𝑘 ) ) ) ↔ ( 𝑃 pCnt ( ! ‘ 0 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 0 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) |
| 7 | 1 6 | raleqbidv | ⊢ ( 𝑥 = 0 → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑥 ) ( 𝑃 pCnt ( ! ‘ 𝑥 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑥 / ( 𝑃 ↑ 𝑘 ) ) ) ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 0 ) ( 𝑃 pCnt ( ! ‘ 0 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 0 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) |
| 8 | 7 | imbi2d | ⊢ ( 𝑥 = 0 → ( ( 𝑃 ∈ ℙ → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑥 ) ( 𝑃 pCnt ( ! ‘ 𝑥 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑥 / ( 𝑃 ↑ 𝑘 ) ) ) ) ↔ ( 𝑃 ∈ ℙ → ∀ 𝑚 ∈ ( ℤ≥ ‘ 0 ) ( 𝑃 pCnt ( ! ‘ 0 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 0 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) ) |
| 9 | fveq2 | ⊢ ( 𝑥 = 𝑛 → ( ℤ≥ ‘ 𝑥 ) = ( ℤ≥ ‘ 𝑛 ) ) | |
| 10 | fveq2 | ⊢ ( 𝑥 = 𝑛 → ( ! ‘ 𝑥 ) = ( ! ‘ 𝑛 ) ) | |
| 11 | 10 | oveq2d | ⊢ ( 𝑥 = 𝑛 → ( 𝑃 pCnt ( ! ‘ 𝑥 ) ) = ( 𝑃 pCnt ( ! ‘ 𝑛 ) ) ) |
| 12 | fvoveq1 | ⊢ ( 𝑥 = 𝑛 → ( ⌊ ‘ ( 𝑥 / ( 𝑃 ↑ 𝑘 ) ) ) = ( ⌊ ‘ ( 𝑛 / ( 𝑃 ↑ 𝑘 ) ) ) ) | |
| 13 | 12 | sumeq2sdv | ⊢ ( 𝑥 = 𝑛 → Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑥 / ( 𝑃 ↑ 𝑘 ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑛 / ( 𝑃 ↑ 𝑘 ) ) ) ) |
| 14 | 11 13 | eqeq12d | ⊢ ( 𝑥 = 𝑛 → ( ( 𝑃 pCnt ( ! ‘ 𝑥 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑥 / ( 𝑃 ↑ 𝑘 ) ) ) ↔ ( 𝑃 pCnt ( ! ‘ 𝑛 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑛 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) |
| 15 | 9 14 | raleqbidv | ⊢ ( 𝑥 = 𝑛 → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑥 ) ( 𝑃 pCnt ( ! ‘ 𝑥 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑥 / ( 𝑃 ↑ 𝑘 ) ) ) ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑃 pCnt ( ! ‘ 𝑛 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑛 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) |
| 16 | 15 | imbi2d | ⊢ ( 𝑥 = 𝑛 → ( ( 𝑃 ∈ ℙ → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑥 ) ( 𝑃 pCnt ( ! ‘ 𝑥 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑥 / ( 𝑃 ↑ 𝑘 ) ) ) ) ↔ ( 𝑃 ∈ ℙ → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑃 pCnt ( ! ‘ 𝑛 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑛 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) ) |
| 17 | fveq2 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ℤ≥ ‘ 𝑥 ) = ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) | |
| 18 | fveq2 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ! ‘ 𝑥 ) = ( ! ‘ ( 𝑛 + 1 ) ) ) | |
| 19 | 18 | oveq2d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑃 pCnt ( ! ‘ 𝑥 ) ) = ( 𝑃 pCnt ( ! ‘ ( 𝑛 + 1 ) ) ) ) |
| 20 | fvoveq1 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ⌊ ‘ ( 𝑥 / ( 𝑃 ↑ 𝑘 ) ) ) = ( ⌊ ‘ ( ( 𝑛 + 1 ) / ( 𝑃 ↑ 𝑘 ) ) ) ) | |
| 21 | 20 | sumeq2sdv | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑥 / ( 𝑃 ↑ 𝑘 ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( ( 𝑛 + 1 ) / ( 𝑃 ↑ 𝑘 ) ) ) ) |
| 22 | 19 21 | eqeq12d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝑃 pCnt ( ! ‘ 𝑥 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑥 / ( 𝑃 ↑ 𝑘 ) ) ) ↔ ( 𝑃 pCnt ( ! ‘ ( 𝑛 + 1 ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( ( 𝑛 + 1 ) / ( 𝑃 ↑ 𝑘 ) ) ) ) ) |
| 23 | 17 22 | raleqbidv | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑥 ) ( 𝑃 pCnt ( ! ‘ 𝑥 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑥 / ( 𝑃 ↑ 𝑘 ) ) ) ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝑃 pCnt ( ! ‘ ( 𝑛 + 1 ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( ( 𝑛 + 1 ) / ( 𝑃 ↑ 𝑘 ) ) ) ) ) |
| 24 | 23 | imbi2d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝑃 ∈ ℙ → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑥 ) ( 𝑃 pCnt ( ! ‘ 𝑥 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑥 / ( 𝑃 ↑ 𝑘 ) ) ) ) ↔ ( 𝑃 ∈ ℙ → ∀ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝑃 pCnt ( ! ‘ ( 𝑛 + 1 ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( ( 𝑛 + 1 ) / ( 𝑃 ↑ 𝑘 ) ) ) ) ) ) |
| 25 | fveq2 | ⊢ ( 𝑥 = 𝑁 → ( ℤ≥ ‘ 𝑥 ) = ( ℤ≥ ‘ 𝑁 ) ) | |
| 26 | fveq2 | ⊢ ( 𝑥 = 𝑁 → ( ! ‘ 𝑥 ) = ( ! ‘ 𝑁 ) ) | |
| 27 | 26 | oveq2d | ⊢ ( 𝑥 = 𝑁 → ( 𝑃 pCnt ( ! ‘ 𝑥 ) ) = ( 𝑃 pCnt ( ! ‘ 𝑁 ) ) ) |
| 28 | fvoveq1 | ⊢ ( 𝑥 = 𝑁 → ( ⌊ ‘ ( 𝑥 / ( 𝑃 ↑ 𝑘 ) ) ) = ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) | |
| 29 | 28 | sumeq2sdv | ⊢ ( 𝑥 = 𝑁 → Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑥 / ( 𝑃 ↑ 𝑘 ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) |
| 30 | 27 29 | eqeq12d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝑃 pCnt ( ! ‘ 𝑥 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑥 / ( 𝑃 ↑ 𝑘 ) ) ) ↔ ( 𝑃 pCnt ( ! ‘ 𝑁 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) |
| 31 | 25 30 | raleqbidv | ⊢ ( 𝑥 = 𝑁 → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑥 ) ( 𝑃 pCnt ( ! ‘ 𝑥 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑥 / ( 𝑃 ↑ 𝑘 ) ) ) ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ( 𝑃 pCnt ( ! ‘ 𝑁 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) |
| 32 | 31 | imbi2d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝑃 ∈ ℙ → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑥 ) ( 𝑃 pCnt ( ! ‘ 𝑥 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑥 / ( 𝑃 ↑ 𝑘 ) ) ) ) ↔ ( 𝑃 ∈ ℙ → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ( 𝑃 pCnt ( ! ‘ 𝑁 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) ) |
| 33 | fzfid | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑚 ∈ ( ℤ≥ ‘ 0 ) ) → ( 1 ... 𝑚 ) ∈ Fin ) | |
| 34 | sumz | ⊢ ( ( ( 1 ... 𝑚 ) ⊆ ( ℤ≥ ‘ 1 ) ∨ ( 1 ... 𝑚 ) ∈ Fin ) → Σ 𝑘 ∈ ( 1 ... 𝑚 ) 0 = 0 ) | |
| 35 | 34 | olcs | ⊢ ( ( 1 ... 𝑚 ) ∈ Fin → Σ 𝑘 ∈ ( 1 ... 𝑚 ) 0 = 0 ) |
| 36 | 33 35 | syl | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑚 ∈ ( ℤ≥ ‘ 0 ) ) → Σ 𝑘 ∈ ( 1 ... 𝑚 ) 0 = 0 ) |
| 37 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 38 | elfznn | ⊢ ( 𝑘 ∈ ( 1 ... 𝑚 ) → 𝑘 ∈ ℕ ) | |
| 39 | 38 | nnnn0d | ⊢ ( 𝑘 ∈ ( 1 ... 𝑚 ) → 𝑘 ∈ ℕ0 ) |
| 40 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 41 | 39 40 | eleqtrdi | ⊢ ( 𝑘 ∈ ( 1 ... 𝑚 ) → 𝑘 ∈ ( ℤ≥ ‘ 0 ) ) |
| 42 | 41 | adantl | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑚 ∈ ( ℤ≥ ‘ 0 ) ) ∧ 𝑘 ∈ ( 1 ... 𝑚 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 0 ) ) |
| 43 | simpll | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑚 ∈ ( ℤ≥ ‘ 0 ) ) ∧ 𝑘 ∈ ( 1 ... 𝑚 ) ) → 𝑃 ∈ ℙ ) | |
| 44 | pcfaclem | ⊢ ( ( 0 ∈ ℕ0 ∧ 𝑘 ∈ ( ℤ≥ ‘ 0 ) ∧ 𝑃 ∈ ℙ ) → ( ⌊ ‘ ( 0 / ( 𝑃 ↑ 𝑘 ) ) ) = 0 ) | |
| 45 | 37 42 43 44 | mp3an2i | ⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑚 ∈ ( ℤ≥ ‘ 0 ) ) ∧ 𝑘 ∈ ( 1 ... 𝑚 ) ) → ( ⌊ ‘ ( 0 / ( 𝑃 ↑ 𝑘 ) ) ) = 0 ) |
| 46 | 45 | sumeq2dv | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑚 ∈ ( ℤ≥ ‘ 0 ) ) → Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 0 / ( 𝑃 ↑ 𝑘 ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) 0 ) |
| 47 | fac0 | ⊢ ( ! ‘ 0 ) = 1 | |
| 48 | 47 | oveq2i | ⊢ ( 𝑃 pCnt ( ! ‘ 0 ) ) = ( 𝑃 pCnt 1 ) |
| 49 | pc1 | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt 1 ) = 0 ) | |
| 50 | 48 49 | eqtrid | ⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt ( ! ‘ 0 ) ) = 0 ) |
| 51 | 50 | adantr | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑚 ∈ ( ℤ≥ ‘ 0 ) ) → ( 𝑃 pCnt ( ! ‘ 0 ) ) = 0 ) |
| 52 | 36 46 51 | 3eqtr4rd | ⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑚 ∈ ( ℤ≥ ‘ 0 ) ) → ( 𝑃 pCnt ( ! ‘ 0 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 0 / ( 𝑃 ↑ 𝑘 ) ) ) ) |
| 53 | 52 | ralrimiva | ⊢ ( 𝑃 ∈ ℙ → ∀ 𝑚 ∈ ( ℤ≥ ‘ 0 ) ( 𝑃 pCnt ( ! ‘ 0 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 0 / ( 𝑃 ↑ 𝑘 ) ) ) ) |
| 54 | nn0z | ⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℤ ) | |
| 55 | 54 | adantr | ⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) → 𝑛 ∈ ℤ ) |
| 56 | uzid | ⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ( ℤ≥ ‘ 𝑛 ) ) | |
| 57 | peano2uz | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑛 ) → ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ 𝑛 ) ) | |
| 58 | 55 56 57 | 3syl | ⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) → ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ 𝑛 ) ) |
| 59 | uzss | ⊢ ( ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ 𝑛 ) → ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ⊆ ( ℤ≥ ‘ 𝑛 ) ) | |
| 60 | ssralv | ⊢ ( ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ⊆ ( ℤ≥ ‘ 𝑛 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑃 pCnt ( ! ‘ 𝑛 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑛 / ( 𝑃 ↑ 𝑘 ) ) ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝑃 pCnt ( ! ‘ 𝑛 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑛 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) | |
| 61 | 58 59 60 | 3syl | ⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑃 pCnt ( ! ‘ 𝑛 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑛 / ( 𝑃 ↑ 𝑘 ) ) ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝑃 pCnt ( ! ‘ 𝑛 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑛 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) |
| 62 | oveq1 | ⊢ ( ( 𝑃 pCnt ( ! ‘ 𝑛 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑛 / ( 𝑃 ↑ 𝑘 ) ) ) → ( ( 𝑃 pCnt ( ! ‘ 𝑛 ) ) + ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) = ( Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑛 / ( 𝑃 ↑ 𝑘 ) ) ) + ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) ) | |
| 63 | simpll | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → 𝑛 ∈ ℕ0 ) | |
| 64 | facp1 | ⊢ ( 𝑛 ∈ ℕ0 → ( ! ‘ ( 𝑛 + 1 ) ) = ( ( ! ‘ 𝑛 ) · ( 𝑛 + 1 ) ) ) | |
| 65 | 63 64 | syl | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( ! ‘ ( 𝑛 + 1 ) ) = ( ( ! ‘ 𝑛 ) · ( 𝑛 + 1 ) ) ) |
| 66 | 65 | oveq2d | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( 𝑃 pCnt ( ! ‘ ( 𝑛 + 1 ) ) ) = ( 𝑃 pCnt ( ( ! ‘ 𝑛 ) · ( 𝑛 + 1 ) ) ) ) |
| 67 | simplr | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → 𝑃 ∈ ℙ ) | |
| 68 | faccl | ⊢ ( 𝑛 ∈ ℕ0 → ( ! ‘ 𝑛 ) ∈ ℕ ) | |
| 69 | nnz | ⊢ ( ( ! ‘ 𝑛 ) ∈ ℕ → ( ! ‘ 𝑛 ) ∈ ℤ ) | |
| 70 | nnne0 | ⊢ ( ( ! ‘ 𝑛 ) ∈ ℕ → ( ! ‘ 𝑛 ) ≠ 0 ) | |
| 71 | 69 70 | jca | ⊢ ( ( ! ‘ 𝑛 ) ∈ ℕ → ( ( ! ‘ 𝑛 ) ∈ ℤ ∧ ( ! ‘ 𝑛 ) ≠ 0 ) ) |
| 72 | 63 68 71 | 3syl | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( ( ! ‘ 𝑛 ) ∈ ℤ ∧ ( ! ‘ 𝑛 ) ≠ 0 ) ) |
| 73 | nn0p1nn | ⊢ ( 𝑛 ∈ ℕ0 → ( 𝑛 + 1 ) ∈ ℕ ) | |
| 74 | nnz | ⊢ ( ( 𝑛 + 1 ) ∈ ℕ → ( 𝑛 + 1 ) ∈ ℤ ) | |
| 75 | nnne0 | ⊢ ( ( 𝑛 + 1 ) ∈ ℕ → ( 𝑛 + 1 ) ≠ 0 ) | |
| 76 | 74 75 | jca | ⊢ ( ( 𝑛 + 1 ) ∈ ℕ → ( ( 𝑛 + 1 ) ∈ ℤ ∧ ( 𝑛 + 1 ) ≠ 0 ) ) |
| 77 | 63 73 76 | 3syl | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( ( 𝑛 + 1 ) ∈ ℤ ∧ ( 𝑛 + 1 ) ≠ 0 ) ) |
| 78 | pcmul | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( ! ‘ 𝑛 ) ∈ ℤ ∧ ( ! ‘ 𝑛 ) ≠ 0 ) ∧ ( ( 𝑛 + 1 ) ∈ ℤ ∧ ( 𝑛 + 1 ) ≠ 0 ) ) → ( 𝑃 pCnt ( ( ! ‘ 𝑛 ) · ( 𝑛 + 1 ) ) ) = ( ( 𝑃 pCnt ( ! ‘ 𝑛 ) ) + ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) ) | |
| 79 | 67 72 77 78 | syl3anc | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( 𝑃 pCnt ( ( ! ‘ 𝑛 ) · ( 𝑛 + 1 ) ) ) = ( ( 𝑃 pCnt ( ! ‘ 𝑛 ) ) + ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) ) |
| 80 | 66 79 | eqtr2d | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( ( 𝑃 pCnt ( ! ‘ 𝑛 ) ) + ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) = ( 𝑃 pCnt ( ! ‘ ( 𝑛 + 1 ) ) ) ) |
| 81 | 63 | adantr | ⊢ ( ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) ∧ 𝑘 ∈ ( 1 ... 𝑚 ) ) → 𝑛 ∈ ℕ0 ) |
| 82 | 81 | nn0zd | ⊢ ( ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) ∧ 𝑘 ∈ ( 1 ... 𝑚 ) ) → 𝑛 ∈ ℤ ) |
| 83 | prmnn | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) | |
| 84 | 83 | ad2antlr | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → 𝑃 ∈ ℕ ) |
| 85 | nnexpcl | ⊢ ( ( 𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑘 ) ∈ ℕ ) | |
| 86 | 84 39 85 | syl2an | ⊢ ( ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) ∧ 𝑘 ∈ ( 1 ... 𝑚 ) ) → ( 𝑃 ↑ 𝑘 ) ∈ ℕ ) |
| 87 | fldivp1 | ⊢ ( ( 𝑛 ∈ ℤ ∧ ( 𝑃 ↑ 𝑘 ) ∈ ℕ ) → ( ( ⌊ ‘ ( ( 𝑛 + 1 ) / ( 𝑃 ↑ 𝑘 ) ) ) − ( ⌊ ‘ ( 𝑛 / ( 𝑃 ↑ 𝑘 ) ) ) ) = if ( ( 𝑃 ↑ 𝑘 ) ∥ ( 𝑛 + 1 ) , 1 , 0 ) ) | |
| 88 | 82 86 87 | syl2anc | ⊢ ( ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) ∧ 𝑘 ∈ ( 1 ... 𝑚 ) ) → ( ( ⌊ ‘ ( ( 𝑛 + 1 ) / ( 𝑃 ↑ 𝑘 ) ) ) − ( ⌊ ‘ ( 𝑛 / ( 𝑃 ↑ 𝑘 ) ) ) ) = if ( ( 𝑃 ↑ 𝑘 ) ∥ ( 𝑛 + 1 ) , 1 , 0 ) ) |
| 89 | elfzuz | ⊢ ( 𝑘 ∈ ( 1 ... 𝑚 ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 90 | 63 73 | syl | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( 𝑛 + 1 ) ∈ ℕ ) |
| 91 | 67 90 | pccld | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( 𝑃 pCnt ( 𝑛 + 1 ) ) ∈ ℕ0 ) |
| 92 | 91 | nn0zd | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( 𝑃 pCnt ( 𝑛 + 1 ) ) ∈ ℤ ) |
| 93 | elfz5 | ⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 1 ) ∧ ( 𝑃 pCnt ( 𝑛 + 1 ) ) ∈ ℤ ) → ( 𝑘 ∈ ( 1 ... ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) ↔ 𝑘 ≤ ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) ) | |
| 94 | 89 92 93 | syl2anr | ⊢ ( ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) ∧ 𝑘 ∈ ( 1 ... 𝑚 ) ) → ( 𝑘 ∈ ( 1 ... ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) ↔ 𝑘 ≤ ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) ) |
| 95 | simpllr | ⊢ ( ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) ∧ 𝑘 ∈ ( 1 ... 𝑚 ) ) → 𝑃 ∈ ℙ ) | |
| 96 | 81 73 | syl | ⊢ ( ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) ∧ 𝑘 ∈ ( 1 ... 𝑚 ) ) → ( 𝑛 + 1 ) ∈ ℕ ) |
| 97 | 96 | nnzd | ⊢ ( ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) ∧ 𝑘 ∈ ( 1 ... 𝑚 ) ) → ( 𝑛 + 1 ) ∈ ℤ ) |
| 98 | 39 | adantl | ⊢ ( ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) ∧ 𝑘 ∈ ( 1 ... 𝑚 ) ) → 𝑘 ∈ ℕ0 ) |
| 99 | pcdvdsb | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑛 + 1 ) ∈ ℤ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ≤ ( 𝑃 pCnt ( 𝑛 + 1 ) ) ↔ ( 𝑃 ↑ 𝑘 ) ∥ ( 𝑛 + 1 ) ) ) | |
| 100 | 95 97 98 99 | syl3anc | ⊢ ( ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) ∧ 𝑘 ∈ ( 1 ... 𝑚 ) ) → ( 𝑘 ≤ ( 𝑃 pCnt ( 𝑛 + 1 ) ) ↔ ( 𝑃 ↑ 𝑘 ) ∥ ( 𝑛 + 1 ) ) ) |
| 101 | 94 100 | bitr2d | ⊢ ( ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) ∧ 𝑘 ∈ ( 1 ... 𝑚 ) ) → ( ( 𝑃 ↑ 𝑘 ) ∥ ( 𝑛 + 1 ) ↔ 𝑘 ∈ ( 1 ... ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) ) ) |
| 102 | 101 | ifbid | ⊢ ( ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) ∧ 𝑘 ∈ ( 1 ... 𝑚 ) ) → if ( ( 𝑃 ↑ 𝑘 ) ∥ ( 𝑛 + 1 ) , 1 , 0 ) = if ( 𝑘 ∈ ( 1 ... ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) , 1 , 0 ) ) |
| 103 | 88 102 | eqtrd | ⊢ ( ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) ∧ 𝑘 ∈ ( 1 ... 𝑚 ) ) → ( ( ⌊ ‘ ( ( 𝑛 + 1 ) / ( 𝑃 ↑ 𝑘 ) ) ) − ( ⌊ ‘ ( 𝑛 / ( 𝑃 ↑ 𝑘 ) ) ) ) = if ( 𝑘 ∈ ( 1 ... ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) , 1 , 0 ) ) |
| 104 | 103 | sumeq2dv | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ( ⌊ ‘ ( ( 𝑛 + 1 ) / ( 𝑃 ↑ 𝑘 ) ) ) − ( ⌊ ‘ ( 𝑛 / ( 𝑃 ↑ 𝑘 ) ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) if ( 𝑘 ∈ ( 1 ... ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) , 1 , 0 ) ) |
| 105 | fzfid | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( 1 ... 𝑚 ) ∈ Fin ) | |
| 106 | 63 | nn0red | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → 𝑛 ∈ ℝ ) |
| 107 | peano2re | ⊢ ( 𝑛 ∈ ℝ → ( 𝑛 + 1 ) ∈ ℝ ) | |
| 108 | 106 107 | syl | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( 𝑛 + 1 ) ∈ ℝ ) |
| 109 | 108 | adantr | ⊢ ( ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) ∧ 𝑘 ∈ ( 1 ... 𝑚 ) ) → ( 𝑛 + 1 ) ∈ ℝ ) |
| 110 | 109 86 | nndivred | ⊢ ( ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) ∧ 𝑘 ∈ ( 1 ... 𝑚 ) ) → ( ( 𝑛 + 1 ) / ( 𝑃 ↑ 𝑘 ) ) ∈ ℝ ) |
| 111 | 110 | flcld | ⊢ ( ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) ∧ 𝑘 ∈ ( 1 ... 𝑚 ) ) → ( ⌊ ‘ ( ( 𝑛 + 1 ) / ( 𝑃 ↑ 𝑘 ) ) ) ∈ ℤ ) |
| 112 | 111 | zcnd | ⊢ ( ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) ∧ 𝑘 ∈ ( 1 ... 𝑚 ) ) → ( ⌊ ‘ ( ( 𝑛 + 1 ) / ( 𝑃 ↑ 𝑘 ) ) ) ∈ ℂ ) |
| 113 | 106 | adantr | ⊢ ( ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) ∧ 𝑘 ∈ ( 1 ... 𝑚 ) ) → 𝑛 ∈ ℝ ) |
| 114 | 113 86 | nndivred | ⊢ ( ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) ∧ 𝑘 ∈ ( 1 ... 𝑚 ) ) → ( 𝑛 / ( 𝑃 ↑ 𝑘 ) ) ∈ ℝ ) |
| 115 | 114 | flcld | ⊢ ( ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) ∧ 𝑘 ∈ ( 1 ... 𝑚 ) ) → ( ⌊ ‘ ( 𝑛 / ( 𝑃 ↑ 𝑘 ) ) ) ∈ ℤ ) |
| 116 | 115 | zcnd | ⊢ ( ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) ∧ 𝑘 ∈ ( 1 ... 𝑚 ) ) → ( ⌊ ‘ ( 𝑛 / ( 𝑃 ↑ 𝑘 ) ) ) ∈ ℂ ) |
| 117 | 105 112 116 | fsumsub | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ( ⌊ ‘ ( ( 𝑛 + 1 ) / ( 𝑃 ↑ 𝑘 ) ) ) − ( ⌊ ‘ ( 𝑛 / ( 𝑃 ↑ 𝑘 ) ) ) ) = ( Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( ( 𝑛 + 1 ) / ( 𝑃 ↑ 𝑘 ) ) ) − Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑛 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) |
| 118 | fzfi | ⊢ ( 1 ... 𝑚 ) ∈ Fin | |
| 119 | 91 | nn0red | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( 𝑃 pCnt ( 𝑛 + 1 ) ) ∈ ℝ ) |
| 120 | eluzelz | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) → 𝑚 ∈ ℤ ) | |
| 121 | 120 | adantl | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → 𝑚 ∈ ℤ ) |
| 122 | 121 | zred | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → 𝑚 ∈ ℝ ) |
| 123 | prmuz2 | ⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 124 | 123 | ad2antlr | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
| 125 | 90 | nnnn0d | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( 𝑛 + 1 ) ∈ ℕ0 ) |
| 126 | bernneq3 | ⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑛 + 1 ) ∈ ℕ0 ) → ( 𝑛 + 1 ) < ( 𝑃 ↑ ( 𝑛 + 1 ) ) ) | |
| 127 | 124 125 126 | syl2anc | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( 𝑛 + 1 ) < ( 𝑃 ↑ ( 𝑛 + 1 ) ) ) |
| 128 | 119 108 | letrid | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( ( 𝑃 pCnt ( 𝑛 + 1 ) ) ≤ ( 𝑛 + 1 ) ∨ ( 𝑛 + 1 ) ≤ ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) ) |
| 129 | 128 | ord | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( ¬ ( 𝑃 pCnt ( 𝑛 + 1 ) ) ≤ ( 𝑛 + 1 ) → ( 𝑛 + 1 ) ≤ ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) ) |
| 130 | 90 | nnzd | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( 𝑛 + 1 ) ∈ ℤ ) |
| 131 | pcdvdsb | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑛 + 1 ) ∈ ℤ ∧ ( 𝑛 + 1 ) ∈ ℕ0 ) → ( ( 𝑛 + 1 ) ≤ ( 𝑃 pCnt ( 𝑛 + 1 ) ) ↔ ( 𝑃 ↑ ( 𝑛 + 1 ) ) ∥ ( 𝑛 + 1 ) ) ) | |
| 132 | 67 130 125 131 | syl3anc | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( ( 𝑛 + 1 ) ≤ ( 𝑃 pCnt ( 𝑛 + 1 ) ) ↔ ( 𝑃 ↑ ( 𝑛 + 1 ) ) ∥ ( 𝑛 + 1 ) ) ) |
| 133 | 84 125 | nnexpcld | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( 𝑃 ↑ ( 𝑛 + 1 ) ) ∈ ℕ ) |
| 134 | 133 | nnzd | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( 𝑃 ↑ ( 𝑛 + 1 ) ) ∈ ℤ ) |
| 135 | dvdsle | ⊢ ( ( ( 𝑃 ↑ ( 𝑛 + 1 ) ) ∈ ℤ ∧ ( 𝑛 + 1 ) ∈ ℕ ) → ( ( 𝑃 ↑ ( 𝑛 + 1 ) ) ∥ ( 𝑛 + 1 ) → ( 𝑃 ↑ ( 𝑛 + 1 ) ) ≤ ( 𝑛 + 1 ) ) ) | |
| 136 | 134 90 135 | syl2anc | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( ( 𝑃 ↑ ( 𝑛 + 1 ) ) ∥ ( 𝑛 + 1 ) → ( 𝑃 ↑ ( 𝑛 + 1 ) ) ≤ ( 𝑛 + 1 ) ) ) |
| 137 | 133 | nnred | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( 𝑃 ↑ ( 𝑛 + 1 ) ) ∈ ℝ ) |
| 138 | 137 108 | lenltd | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( ( 𝑃 ↑ ( 𝑛 + 1 ) ) ≤ ( 𝑛 + 1 ) ↔ ¬ ( 𝑛 + 1 ) < ( 𝑃 ↑ ( 𝑛 + 1 ) ) ) ) |
| 139 | 136 138 | sylibd | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( ( 𝑃 ↑ ( 𝑛 + 1 ) ) ∥ ( 𝑛 + 1 ) → ¬ ( 𝑛 + 1 ) < ( 𝑃 ↑ ( 𝑛 + 1 ) ) ) ) |
| 140 | 132 139 | sylbid | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( ( 𝑛 + 1 ) ≤ ( 𝑃 pCnt ( 𝑛 + 1 ) ) → ¬ ( 𝑛 + 1 ) < ( 𝑃 ↑ ( 𝑛 + 1 ) ) ) ) |
| 141 | 129 140 | syld | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( ¬ ( 𝑃 pCnt ( 𝑛 + 1 ) ) ≤ ( 𝑛 + 1 ) → ¬ ( 𝑛 + 1 ) < ( 𝑃 ↑ ( 𝑛 + 1 ) ) ) ) |
| 142 | 127 141 | mt4d | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( 𝑃 pCnt ( 𝑛 + 1 ) ) ≤ ( 𝑛 + 1 ) ) |
| 143 | eluzle | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) → ( 𝑛 + 1 ) ≤ 𝑚 ) | |
| 144 | 143 | adantl | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( 𝑛 + 1 ) ≤ 𝑚 ) |
| 145 | 119 108 122 142 144 | letrd | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( 𝑃 pCnt ( 𝑛 + 1 ) ) ≤ 𝑚 ) |
| 146 | eluz | ⊢ ( ( ( 𝑃 pCnt ( 𝑛 + 1 ) ) ∈ ℤ ∧ 𝑚 ∈ ℤ ) → ( 𝑚 ∈ ( ℤ≥ ‘ ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) ↔ ( 𝑃 pCnt ( 𝑛 + 1 ) ) ≤ 𝑚 ) ) | |
| 147 | 92 121 146 | syl2anc | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( 𝑚 ∈ ( ℤ≥ ‘ ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) ↔ ( 𝑃 pCnt ( 𝑛 + 1 ) ) ≤ 𝑚 ) ) |
| 148 | 145 147 | mpbird | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → 𝑚 ∈ ( ℤ≥ ‘ ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) ) |
| 149 | fzss2 | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) → ( 1 ... ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) ⊆ ( 1 ... 𝑚 ) ) | |
| 150 | 148 149 | syl | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( 1 ... ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) ⊆ ( 1 ... 𝑚 ) ) |
| 151 | sumhash | ⊢ ( ( ( 1 ... 𝑚 ) ∈ Fin ∧ ( 1 ... ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) ⊆ ( 1 ... 𝑚 ) ) → Σ 𝑘 ∈ ( 1 ... 𝑚 ) if ( 𝑘 ∈ ( 1 ... ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) , 1 , 0 ) = ( ♯ ‘ ( 1 ... ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) ) ) | |
| 152 | 118 150 151 | sylancr | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → Σ 𝑘 ∈ ( 1 ... 𝑚 ) if ( 𝑘 ∈ ( 1 ... ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) , 1 , 0 ) = ( ♯ ‘ ( 1 ... ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) ) ) |
| 153 | hashfz1 | ⊢ ( ( 𝑃 pCnt ( 𝑛 + 1 ) ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) ) = ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) | |
| 154 | 91 153 | syl | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( ♯ ‘ ( 1 ... ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) ) = ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) |
| 155 | 152 154 | eqtrd | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → Σ 𝑘 ∈ ( 1 ... 𝑚 ) if ( 𝑘 ∈ ( 1 ... ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) , 1 , 0 ) = ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) |
| 156 | 104 117 155 | 3eqtr3d | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( ( 𝑛 + 1 ) / ( 𝑃 ↑ 𝑘 ) ) ) − Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑛 / ( 𝑃 ↑ 𝑘 ) ) ) ) = ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) |
| 157 | 105 112 | fsumcl | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( ( 𝑛 + 1 ) / ( 𝑃 ↑ 𝑘 ) ) ) ∈ ℂ ) |
| 158 | 105 116 | fsumcl | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑛 / ( 𝑃 ↑ 𝑘 ) ) ) ∈ ℂ ) |
| 159 | 119 | recnd | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( 𝑃 pCnt ( 𝑛 + 1 ) ) ∈ ℂ ) |
| 160 | 157 158 159 | subaddd | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( ( Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( ( 𝑛 + 1 ) / ( 𝑃 ↑ 𝑘 ) ) ) − Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑛 / ( 𝑃 ↑ 𝑘 ) ) ) ) = ( 𝑃 pCnt ( 𝑛 + 1 ) ) ↔ ( Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑛 / ( 𝑃 ↑ 𝑘 ) ) ) + ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( ( 𝑛 + 1 ) / ( 𝑃 ↑ 𝑘 ) ) ) ) ) |
| 161 | 156 160 | mpbid | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑛 / ( 𝑃 ↑ 𝑘 ) ) ) + ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( ( 𝑛 + 1 ) / ( 𝑃 ↑ 𝑘 ) ) ) ) |
| 162 | 80 161 | eqeq12d | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( ( ( 𝑃 pCnt ( ! ‘ 𝑛 ) ) + ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) = ( Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑛 / ( 𝑃 ↑ 𝑘 ) ) ) + ( 𝑃 pCnt ( 𝑛 + 1 ) ) ) ↔ ( 𝑃 pCnt ( ! ‘ ( 𝑛 + 1 ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( ( 𝑛 + 1 ) / ( 𝑃 ↑ 𝑘 ) ) ) ) ) |
| 163 | 62 162 | imbitrid | ⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( ( 𝑃 pCnt ( ! ‘ 𝑛 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑛 / ( 𝑃 ↑ 𝑘 ) ) ) → ( 𝑃 pCnt ( ! ‘ ( 𝑛 + 1 ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( ( 𝑛 + 1 ) / ( 𝑃 ↑ 𝑘 ) ) ) ) ) |
| 164 | 163 | ralimdva | ⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝑃 pCnt ( ! ‘ 𝑛 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑛 / ( 𝑃 ↑ 𝑘 ) ) ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝑃 pCnt ( ! ‘ ( 𝑛 + 1 ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( ( 𝑛 + 1 ) / ( 𝑃 ↑ 𝑘 ) ) ) ) ) |
| 165 | 61 164 | syld | ⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑃 pCnt ( ! ‘ 𝑛 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑛 / ( 𝑃 ↑ 𝑘 ) ) ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝑃 pCnt ( ! ‘ ( 𝑛 + 1 ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( ( 𝑛 + 1 ) / ( 𝑃 ↑ 𝑘 ) ) ) ) ) |
| 166 | 165 | ex | ⊢ ( 𝑛 ∈ ℕ0 → ( 𝑃 ∈ ℙ → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑃 pCnt ( ! ‘ 𝑛 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑛 / ( 𝑃 ↑ 𝑘 ) ) ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝑃 pCnt ( ! ‘ ( 𝑛 + 1 ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( ( 𝑛 + 1 ) / ( 𝑃 ↑ 𝑘 ) ) ) ) ) ) |
| 167 | 166 | a2d | ⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑃 ∈ ℙ → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑃 pCnt ( ! ‘ 𝑛 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑛 / ( 𝑃 ↑ 𝑘 ) ) ) ) → ( 𝑃 ∈ ℙ → ∀ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ( 𝑃 pCnt ( ! ‘ ( 𝑛 + 1 ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( ( 𝑛 + 1 ) / ( 𝑃 ↑ 𝑘 ) ) ) ) ) ) |
| 168 | 8 16 24 32 53 167 | nn0ind | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑃 ∈ ℙ → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ( 𝑃 pCnt ( ! ‘ 𝑁 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) |
| 169 | 168 | imp | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ( 𝑃 pCnt ( ! ‘ 𝑁 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) |
| 170 | oveq2 | ⊢ ( 𝑚 = 𝑀 → ( 1 ... 𝑚 ) = ( 1 ... 𝑀 ) ) | |
| 171 | 170 | sumeq1d | ⊢ ( 𝑚 = 𝑀 → Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑀 ) ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) |
| 172 | 171 | eqeq2d | ⊢ ( 𝑚 = 𝑀 → ( ( 𝑃 pCnt ( ! ‘ 𝑁 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ↔ ( 𝑃 pCnt ( ! ‘ 𝑁 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑀 ) ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) |
| 173 | 172 | rspcv | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ( 𝑃 pCnt ( ! ‘ 𝑁 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑚 ) ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) → ( 𝑃 pCnt ( ! ‘ 𝑁 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑀 ) ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) |
| 174 | 169 173 | syl5 | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) → ( 𝑃 pCnt ( ! ‘ 𝑁 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑀 ) ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) ) |
| 175 | 174 | 3impib | ⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ) → ( 𝑃 pCnt ( ! ‘ 𝑁 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑀 ) ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) |
| 176 | 175 | 3com12 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → ( 𝑃 pCnt ( ! ‘ 𝑁 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑀 ) ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑘 ) ) ) ) |