This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of 1 over a set is the size of the set. (Contributed by Mario Carneiro, 8-Mar-2014) (Revised by Mario Carneiro, 20-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sumhash | |- ( ( B e. Fin /\ A C_ B ) -> sum_ k e. B if ( k e. A , 1 , 0 ) = ( # ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssfi | |- ( ( B e. Fin /\ A C_ B ) -> A e. Fin ) |
|
| 2 | ax-1cn | |- 1 e. CC |
|
| 3 | fsumconst | |- ( ( A e. Fin /\ 1 e. CC ) -> sum_ k e. A 1 = ( ( # ` A ) x. 1 ) ) |
|
| 4 | 1 2 3 | sylancl | |- ( ( B e. Fin /\ A C_ B ) -> sum_ k e. A 1 = ( ( # ` A ) x. 1 ) ) |
| 5 | simpr | |- ( ( B e. Fin /\ A C_ B ) -> A C_ B ) |
|
| 6 | 2 | rgenw | |- A. k e. A 1 e. CC |
| 7 | 6 | a1i | |- ( ( B e. Fin /\ A C_ B ) -> A. k e. A 1 e. CC ) |
| 8 | animorlr | |- ( ( B e. Fin /\ A C_ B ) -> ( B C_ ( ZZ>= ` C ) \/ B e. Fin ) ) |
|
| 9 | sumss2 | |- ( ( ( A C_ B /\ A. k e. A 1 e. CC ) /\ ( B C_ ( ZZ>= ` C ) \/ B e. Fin ) ) -> sum_ k e. A 1 = sum_ k e. B if ( k e. A , 1 , 0 ) ) |
|
| 10 | 5 7 8 9 | syl21anc | |- ( ( B e. Fin /\ A C_ B ) -> sum_ k e. A 1 = sum_ k e. B if ( k e. A , 1 , 0 ) ) |
| 11 | hashcl | |- ( A e. Fin -> ( # ` A ) e. NN0 ) |
|
| 12 | 1 11 | syl | |- ( ( B e. Fin /\ A C_ B ) -> ( # ` A ) e. NN0 ) |
| 13 | 12 | nn0cnd | |- ( ( B e. Fin /\ A C_ B ) -> ( # ` A ) e. CC ) |
| 14 | 13 | mulridd | |- ( ( B e. Fin /\ A C_ B ) -> ( ( # ` A ) x. 1 ) = ( # ` A ) ) |
| 15 | 4 10 14 | 3eqtr3d | |- ( ( B e. Fin /\ A C_ B ) -> sum_ k e. B if ( k e. A , 1 , 0 ) = ( # ` A ) ) |