This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Integration by parts is applied to integrate sin^(N+1). (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgsinexplem1.1 | |- F = ( x e. CC |-> ( ( sin ` x ) ^ N ) ) |
|
| itgsinexplem1.2 | |- G = ( x e. CC |-> -u ( cos ` x ) ) |
||
| itgsinexplem1.3 | |- H = ( x e. CC |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) |
||
| itgsinexplem1.4 | |- I = ( x e. CC |-> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) |
||
| itgsinexplem1.5 | |- L = ( x e. CC |-> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) ) |
||
| itgsinexplem1.6 | |- M = ( x e. CC |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) |
||
| itgsinexplem1.7 | |- ( ph -> N e. NN ) |
||
| Assertion | itgsinexplem1 | |- ( ph -> S. ( 0 (,) _pi ) ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) _d x = ( N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgsinexplem1.1 | |- F = ( x e. CC |-> ( ( sin ` x ) ^ N ) ) |
|
| 2 | itgsinexplem1.2 | |- G = ( x e. CC |-> -u ( cos ` x ) ) |
|
| 3 | itgsinexplem1.3 | |- H = ( x e. CC |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) |
|
| 4 | itgsinexplem1.4 | |- I = ( x e. CC |-> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) |
|
| 5 | itgsinexplem1.5 | |- L = ( x e. CC |-> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) ) |
|
| 6 | itgsinexplem1.6 | |- M = ( x e. CC |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) |
|
| 7 | itgsinexplem1.7 | |- ( ph -> N e. NN ) |
|
| 8 | 0m0e0 | |- ( 0 - 0 ) = 0 |
|
| 9 | 8 | oveq1i | |- ( ( 0 - 0 ) - S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x ) = ( 0 - S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x ) |
| 10 | 0re | |- 0 e. RR |
|
| 11 | 10 | a1i | |- ( ph -> 0 e. RR ) |
| 12 | pire | |- _pi e. RR |
|
| 13 | 12 | a1i | |- ( ph -> _pi e. RR ) |
| 14 | pipos | |- 0 < _pi |
|
| 15 | 10 12 14 | ltleii | |- 0 <_ _pi |
| 16 | 15 | a1i | |- ( ph -> 0 <_ _pi ) |
| 17 | 10 12 | pm3.2i | |- ( 0 e. RR /\ _pi e. RR ) |
| 18 | iccssre | |- ( ( 0 e. RR /\ _pi e. RR ) -> ( 0 [,] _pi ) C_ RR ) |
|
| 19 | 17 18 | ax-mp | |- ( 0 [,] _pi ) C_ RR |
| 20 | ax-resscn | |- RR C_ CC |
|
| 21 | 19 20 | sstri | |- ( 0 [,] _pi ) C_ CC |
| 22 | 21 | sseli | |- ( x e. ( 0 [,] _pi ) -> x e. CC ) |
| 23 | 22 | adantl | |- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> x e. CC ) |
| 24 | 22 | sincld | |- ( x e. ( 0 [,] _pi ) -> ( sin ` x ) e. CC ) |
| 25 | 24 | adantl | |- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( sin ` x ) e. CC ) |
| 26 | 7 | nnnn0d | |- ( ph -> N e. NN0 ) |
| 27 | 26 | adantr | |- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> N e. NN0 ) |
| 28 | 25 27 | expcld | |- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( sin ` x ) ^ N ) e. CC ) |
| 29 | 1 | fvmpt2 | |- ( ( x e. CC /\ ( ( sin ` x ) ^ N ) e. CC ) -> ( F ` x ) = ( ( sin ` x ) ^ N ) ) |
| 30 | 23 28 29 | syl2anc | |- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( F ` x ) = ( ( sin ` x ) ^ N ) ) |
| 31 | 30 | eqcomd | |- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( sin ` x ) ^ N ) = ( F ` x ) ) |
| 32 | 31 | mpteq2dva | |- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ N ) ) = ( x e. ( 0 [,] _pi ) |-> ( F ` x ) ) ) |
| 33 | nfmpt1 | |- F/_ x ( x e. CC |-> ( ( sin ` x ) ^ N ) ) |
|
| 34 | 1 33 | nfcxfr | |- F/_ x F |
| 35 | nfcv | |- F/_ x sin |
|
| 36 | sincn | |- sin e. ( CC -cn-> CC ) |
|
| 37 | 36 | a1i | |- ( ph -> sin e. ( CC -cn-> CC ) ) |
| 38 | 35 37 26 | expcnfg | |- ( ph -> ( x e. CC |-> ( ( sin ` x ) ^ N ) ) e. ( CC -cn-> CC ) ) |
| 39 | 1 38 | eqeltrid | |- ( ph -> F e. ( CC -cn-> CC ) ) |
| 40 | 21 | a1i | |- ( ph -> ( 0 [,] _pi ) C_ CC ) |
| 41 | 34 39 40 | cncfmptss | |- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( F ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
| 42 | 32 41 | eqeltrd | |- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ N ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
| 43 | 22 | coscld | |- ( x e. ( 0 [,] _pi ) -> ( cos ` x ) e. CC ) |
| 44 | 43 | negcld | |- ( x e. ( 0 [,] _pi ) -> -u ( cos ` x ) e. CC ) |
| 45 | 2 | fvmpt2 | |- ( ( x e. CC /\ -u ( cos ` x ) e. CC ) -> ( G ` x ) = -u ( cos ` x ) ) |
| 46 | 22 44 45 | syl2anc | |- ( x e. ( 0 [,] _pi ) -> ( G ` x ) = -u ( cos ` x ) ) |
| 47 | 46 | eqcomd | |- ( x e. ( 0 [,] _pi ) -> -u ( cos ` x ) = ( G ` x ) ) |
| 48 | 47 | adantl | |- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> -u ( cos ` x ) = ( G ` x ) ) |
| 49 | 48 | mpteq2dva | |- ( ph -> ( x e. ( 0 [,] _pi ) |-> -u ( cos ` x ) ) = ( x e. ( 0 [,] _pi ) |-> ( G ` x ) ) ) |
| 50 | nfmpt1 | |- F/_ x ( x e. CC |-> -u ( cos ` x ) ) |
|
| 51 | 2 50 | nfcxfr | |- F/_ x G |
| 52 | coscn | |- cos e. ( CC -cn-> CC ) |
|
| 53 | 52 | a1i | |- ( ph -> cos e. ( CC -cn-> CC ) ) |
| 54 | 2 | negfcncf | |- ( cos e. ( CC -cn-> CC ) -> G e. ( CC -cn-> CC ) ) |
| 55 | 53 54 | syl | |- ( ph -> G e. ( CC -cn-> CC ) ) |
| 56 | 51 55 40 | cncfmptss | |- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( G ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
| 57 | 49 56 | eqeltrd | |- ( ph -> ( x e. ( 0 [,] _pi ) |-> -u ( cos ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
| 58 | ssidd | |- ( ph -> CC C_ CC ) |
|
| 59 | 7 | nncnd | |- ( ph -> N e. CC ) |
| 60 | 58 59 58 | constcncfg | |- ( ph -> ( x e. CC |-> N ) e. ( CC -cn-> CC ) ) |
| 61 | nnm1nn0 | |- ( N e. NN -> ( N - 1 ) e. NN0 ) |
|
| 62 | 7 61 | syl | |- ( ph -> ( N - 1 ) e. NN0 ) |
| 63 | 35 37 62 | expcnfg | |- ( ph -> ( x e. CC |-> ( ( sin ` x ) ^ ( N - 1 ) ) ) e. ( CC -cn-> CC ) ) |
| 64 | 60 63 | mulcncf | |- ( ph -> ( x e. CC |-> ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) e. ( CC -cn-> CC ) ) |
| 65 | cosf | |- cos : CC --> CC |
|
| 66 | 65 | a1i | |- ( ph -> cos : CC --> CC ) |
| 67 | 66 | feqmptd | |- ( ph -> cos = ( x e. CC |-> ( cos ` x ) ) ) |
| 68 | 67 52 | eqeltrrdi | |- ( ph -> ( x e. CC |-> ( cos ` x ) ) e. ( CC -cn-> CC ) ) |
| 69 | 64 68 | mulcncf | |- ( ph -> ( x e. CC |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) e. ( CC -cn-> CC ) ) |
| 70 | 3 69 | eqeltrid | |- ( ph -> H e. ( CC -cn-> CC ) ) |
| 71 | ioosscn | |- ( 0 (,) _pi ) C_ CC |
|
| 72 | 71 | a1i | |- ( ph -> ( 0 (,) _pi ) C_ CC ) |
| 73 | 59 | adantr | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> N e. CC ) |
| 74 | 71 | sseli | |- ( x e. ( 0 (,) _pi ) -> x e. CC ) |
| 75 | 74 | sincld | |- ( x e. ( 0 (,) _pi ) -> ( sin ` x ) e. CC ) |
| 76 | 75 | adantl | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( sin ` x ) e. CC ) |
| 77 | 62 | adantr | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( N - 1 ) e. NN0 ) |
| 78 | 76 77 | expcld | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ ( N - 1 ) ) e. CC ) |
| 79 | 73 78 | mulcld | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) e. CC ) |
| 80 | 74 | coscld | |- ( x e. ( 0 (,) _pi ) -> ( cos ` x ) e. CC ) |
| 81 | 80 | adantl | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( cos ` x ) e. CC ) |
| 82 | 79 81 | mulcld | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. CC ) |
| 83 | 3 70 72 58 82 | cncfmptssg | |- ( ph -> ( x e. ( 0 (,) _pi ) |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) e. ( ( 0 (,) _pi ) -cn-> CC ) ) |
| 84 | 35 37 72 | cncfmptss | |- ( ph -> ( x e. ( 0 (,) _pi ) |-> ( sin ` x ) ) e. ( ( 0 (,) _pi ) -cn-> CC ) ) |
| 85 | ioossicc | |- ( 0 (,) _pi ) C_ ( 0 [,] _pi ) |
|
| 86 | 85 | a1i | |- ( ph -> ( 0 (,) _pi ) C_ ( 0 [,] _pi ) ) |
| 87 | ioombl | |- ( 0 (,) _pi ) e. dom vol |
|
| 88 | 87 | a1i | |- ( ph -> ( 0 (,) _pi ) e. dom vol ) |
| 89 | 28 25 | mulcld | |- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) e. CC ) |
| 90 | 4 | fvmpt2 | |- ( ( x e. CC /\ ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) e. CC ) -> ( I ` x ) = ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) |
| 91 | 23 89 90 | syl2anc | |- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( I ` x ) = ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) |
| 92 | 91 | eqcomd | |- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) = ( I ` x ) ) |
| 93 | 92 | mpteq2dva | |- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) = ( x e. ( 0 [,] _pi ) |-> ( I ` x ) ) ) |
| 94 | nfmpt1 | |- F/_ x ( x e. CC |-> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) |
|
| 95 | 4 94 | nfcxfr | |- F/_ x I |
| 96 | sinf | |- sin : CC --> CC |
|
| 97 | 96 | a1i | |- ( ph -> sin : CC --> CC ) |
| 98 | 97 | feqmptd | |- ( ph -> sin = ( x e. CC |-> ( sin ` x ) ) ) |
| 99 | 98 36 | eqeltrrdi | |- ( ph -> ( x e. CC |-> ( sin ` x ) ) e. ( CC -cn-> CC ) ) |
| 100 | 38 99 | mulcncf | |- ( ph -> ( x e. CC |-> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) e. ( CC -cn-> CC ) ) |
| 101 | 4 100 | eqeltrid | |- ( ph -> I e. ( CC -cn-> CC ) ) |
| 102 | 95 101 40 | cncfmptss | |- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( I ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
| 103 | 93 102 | eqeltrd | |- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
| 104 | cniccibl | |- ( ( 0 e. RR /\ _pi e. RR /\ ( x e. ( 0 [,] _pi ) |-> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) -> ( x e. ( 0 [,] _pi ) |-> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) e. L^1 ) |
|
| 105 | 11 13 103 104 | syl3anc | |- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) e. L^1 ) |
| 106 | 86 88 89 105 | iblss | |- ( ph -> ( x e. ( 0 (,) _pi ) |-> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) e. L^1 ) |
| 107 | 59 | adantr | |- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> N e. CC ) |
| 108 | 62 | adantr | |- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( N - 1 ) e. NN0 ) |
| 109 | 25 108 | expcld | |- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( sin ` x ) ^ ( N - 1 ) ) e. CC ) |
| 110 | 107 109 | mulcld | |- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) e. CC ) |
| 111 | 43 | adantl | |- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( cos ` x ) e. CC ) |
| 112 | 110 111 | mulcld | |- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. CC ) |
| 113 | 44 | adantl | |- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> -u ( cos ` x ) e. CC ) |
| 114 | 112 113 | mulcld | |- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) e. CC ) |
| 115 | eqid | |- ( x e. CC |-> -u ( cos ` x ) ) = ( x e. CC |-> -u ( cos ` x ) ) |
|
| 116 | 115 | negfcncf | |- ( cos e. ( CC -cn-> CC ) -> ( x e. CC |-> -u ( cos ` x ) ) e. ( CC -cn-> CC ) ) |
| 117 | 53 116 | syl | |- ( ph -> ( x e. CC |-> -u ( cos ` x ) ) e. ( CC -cn-> CC ) ) |
| 118 | 69 117 | mulcncf | |- ( ph -> ( x e. CC |-> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) ) e. ( CC -cn-> CC ) ) |
| 119 | 5 118 | eqeltrid | |- ( ph -> L e. ( CC -cn-> CC ) ) |
| 120 | 5 119 40 58 114 | cncfmptssg | |- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
| 121 | cniccibl | |- ( ( 0 e. RR /\ _pi e. RR /\ ( x e. ( 0 [,] _pi ) |-> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) -> ( x e. ( 0 [,] _pi ) |-> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) ) e. L^1 ) |
|
| 122 | 11 13 120 121 | syl3anc | |- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) ) e. L^1 ) |
| 123 | 86 88 114 122 | iblss | |- ( ph -> ( x e. ( 0 (,) _pi ) |-> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) ) e. L^1 ) |
| 124 | reelprrecn | |- RR e. { RR , CC } |
|
| 125 | 124 | a1i | |- ( ph -> RR e. { RR , CC } ) |
| 126 | recn | |- ( x e. RR -> x e. CC ) |
|
| 127 | 126 | sincld | |- ( x e. RR -> ( sin ` x ) e. CC ) |
| 128 | 127 | adantl | |- ( ( ph /\ x e. RR ) -> ( sin ` x ) e. CC ) |
| 129 | 26 | adantr | |- ( ( ph /\ x e. RR ) -> N e. NN0 ) |
| 130 | 128 129 | expcld | |- ( ( ph /\ x e. RR ) -> ( ( sin ` x ) ^ N ) e. CC ) |
| 131 | 59 | adantr | |- ( ( ph /\ x e. RR ) -> N e. CC ) |
| 132 | 62 | adantr | |- ( ( ph /\ x e. RR ) -> ( N - 1 ) e. NN0 ) |
| 133 | 128 132 | expcld | |- ( ( ph /\ x e. RR ) -> ( ( sin ` x ) ^ ( N - 1 ) ) e. CC ) |
| 134 | 131 133 | mulcld | |- ( ( ph /\ x e. RR ) -> ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) e. CC ) |
| 135 | 126 | coscld | |- ( x e. RR -> ( cos ` x ) e. CC ) |
| 136 | 135 | adantl | |- ( ( ph /\ x e. RR ) -> ( cos ` x ) e. CC ) |
| 137 | 134 136 | mulcld | |- ( ( ph /\ x e. RR ) -> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. CC ) |
| 138 | sincl | |- ( x e. CC -> ( sin ` x ) e. CC ) |
|
| 139 | 138 | adantl | |- ( ( ph /\ x e. CC ) -> ( sin ` x ) e. CC ) |
| 140 | 26 | adantr | |- ( ( ph /\ x e. CC ) -> N e. NN0 ) |
| 141 | 139 140 | expcld | |- ( ( ph /\ x e. CC ) -> ( ( sin ` x ) ^ N ) e. CC ) |
| 142 | 141 1 | fmptd | |- ( ph -> F : CC --> CC ) |
| 143 | 126 | adantl | |- ( ( ph /\ x e. RR ) -> x e. CC ) |
| 144 | elex | |- ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. CC -> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. _V ) |
|
| 145 | 137 144 | syl | |- ( ( ph /\ x e. RR ) -> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. _V ) |
| 146 | rabid | |- ( x e. { x e. CC | ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. _V } <-> ( x e. CC /\ ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. _V ) ) |
|
| 147 | 143 145 146 | sylanbrc | |- ( ( ph /\ x e. RR ) -> x e. { x e. CC | ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. _V } ) |
| 148 | 3 | dmmpt | |- dom H = { x e. CC | ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. _V } |
| 149 | 147 148 | eleqtrrdi | |- ( ( ph /\ x e. RR ) -> x e. dom H ) |
| 150 | 149 | ex | |- ( ph -> ( x e. RR -> x e. dom H ) ) |
| 151 | 150 | alrimiv | |- ( ph -> A. x ( x e. RR -> x e. dom H ) ) |
| 152 | nfcv | |- F/_ x RR |
|
| 153 | nfmpt1 | |- F/_ x ( x e. CC |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) |
|
| 154 | 3 153 | nfcxfr | |- F/_ x H |
| 155 | 154 | nfdm | |- F/_ x dom H |
| 156 | 152 155 | dfssf | |- ( RR C_ dom H <-> A. x ( x e. RR -> x e. dom H ) ) |
| 157 | 151 156 | sylibr | |- ( ph -> RR C_ dom H ) |
| 158 | 7 | dvsinexp | |- ( ph -> ( CC _D ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ) = ( x e. CC |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) ) |
| 159 | 1 | oveq2i | |- ( CC _D F ) = ( CC _D ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ) |
| 160 | 158 159 3 | 3eqtr4g | |- ( ph -> ( CC _D F ) = H ) |
| 161 | 160 | dmeqd | |- ( ph -> dom ( CC _D F ) = dom H ) |
| 162 | 157 161 | sseqtrrd | |- ( ph -> RR C_ dom ( CC _D F ) ) |
| 163 | dvres3 | |- ( ( ( RR e. { RR , CC } /\ F : CC --> CC ) /\ ( CC C_ CC /\ RR C_ dom ( CC _D F ) ) ) -> ( RR _D ( F |` RR ) ) = ( ( CC _D F ) |` RR ) ) |
|
| 164 | 125 142 58 162 163 | syl22anc | |- ( ph -> ( RR _D ( F |` RR ) ) = ( ( CC _D F ) |` RR ) ) |
| 165 | 1 | reseq1i | |- ( F |` RR ) = ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) |` RR ) |
| 166 | resmpt | |- ( RR C_ CC -> ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) |` RR ) = ( x e. RR |-> ( ( sin ` x ) ^ N ) ) ) |
|
| 167 | 20 166 | ax-mp | |- ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) |` RR ) = ( x e. RR |-> ( ( sin ` x ) ^ N ) ) |
| 168 | 165 167 | eqtri | |- ( F |` RR ) = ( x e. RR |-> ( ( sin ` x ) ^ N ) ) |
| 169 | 168 | oveq2i | |- ( RR _D ( F |` RR ) ) = ( RR _D ( x e. RR |-> ( ( sin ` x ) ^ N ) ) ) |
| 170 | 169 | a1i | |- ( ph -> ( RR _D ( F |` RR ) ) = ( RR _D ( x e. RR |-> ( ( sin ` x ) ^ N ) ) ) ) |
| 171 | 160 | reseq1d | |- ( ph -> ( ( CC _D F ) |` RR ) = ( H |` RR ) ) |
| 172 | 3 | reseq1i | |- ( H |` RR ) = ( ( x e. CC |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) |` RR ) |
| 173 | resmpt | |- ( RR C_ CC -> ( ( x e. CC |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) |` RR ) = ( x e. RR |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) ) |
|
| 174 | 20 173 | ax-mp | |- ( ( x e. CC |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) |` RR ) = ( x e. RR |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) |
| 175 | 172 174 | eqtri | |- ( H |` RR ) = ( x e. RR |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) |
| 176 | 171 175 | eqtrdi | |- ( ph -> ( ( CC _D F ) |` RR ) = ( x e. RR |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) ) |
| 177 | 164 170 176 | 3eqtr3d | |- ( ph -> ( RR _D ( x e. RR |-> ( ( sin ` x ) ^ N ) ) ) = ( x e. RR |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) ) |
| 178 | 19 | a1i | |- ( ph -> ( 0 [,] _pi ) C_ RR ) |
| 179 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 180 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 181 | 17 | a1i | |- ( ph -> ( 0 e. RR /\ _pi e. RR ) ) |
| 182 | iccntr | |- ( ( 0 e. RR /\ _pi e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] _pi ) ) = ( 0 (,) _pi ) ) |
|
| 183 | 181 182 | syl | |- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] _pi ) ) = ( 0 (,) _pi ) ) |
| 184 | 125 130 137 177 178 179 180 183 | dvmptres2 | |- ( ph -> ( RR _D ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ N ) ) ) = ( x e. ( 0 (,) _pi ) |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) ) |
| 185 | 135 | negcld | |- ( x e. RR -> -u ( cos ` x ) e. CC ) |
| 186 | 185 | adantl | |- ( ( ph /\ x e. RR ) -> -u ( cos ` x ) e. CC ) |
| 187 | 127 | negcld | |- ( x e. RR -> -u ( sin ` x ) e. CC ) |
| 188 | 187 | adantl | |- ( ( ph /\ x e. RR ) -> -u ( sin ` x ) e. CC ) |
| 189 | dvcosre | |- ( RR _D ( x e. RR |-> ( cos ` x ) ) ) = ( x e. RR |-> -u ( sin ` x ) ) |
|
| 190 | 189 | a1i | |- ( ph -> ( RR _D ( x e. RR |-> ( cos ` x ) ) ) = ( x e. RR |-> -u ( sin ` x ) ) ) |
| 191 | 125 136 188 190 | dvmptneg | |- ( ph -> ( RR _D ( x e. RR |-> -u ( cos ` x ) ) ) = ( x e. RR |-> -u -u ( sin ` x ) ) ) |
| 192 | 127 | negnegd | |- ( x e. RR -> -u -u ( sin ` x ) = ( sin ` x ) ) |
| 193 | 192 | adantl | |- ( ( ph /\ x e. RR ) -> -u -u ( sin ` x ) = ( sin ` x ) ) |
| 194 | 193 | mpteq2dva | |- ( ph -> ( x e. RR |-> -u -u ( sin ` x ) ) = ( x e. RR |-> ( sin ` x ) ) ) |
| 195 | 191 194 | eqtrd | |- ( ph -> ( RR _D ( x e. RR |-> -u ( cos ` x ) ) ) = ( x e. RR |-> ( sin ` x ) ) ) |
| 196 | 125 186 128 195 178 179 180 183 | dvmptres2 | |- ( ph -> ( RR _D ( x e. ( 0 [,] _pi ) |-> -u ( cos ` x ) ) ) = ( x e. ( 0 (,) _pi ) |-> ( sin ` x ) ) ) |
| 197 | fveq2 | |- ( x = 0 -> ( sin ` x ) = ( sin ` 0 ) ) |
|
| 198 | sin0 | |- ( sin ` 0 ) = 0 |
|
| 199 | 197 198 | eqtrdi | |- ( x = 0 -> ( sin ` x ) = 0 ) |
| 200 | 199 | oveq1d | |- ( x = 0 -> ( ( sin ` x ) ^ N ) = ( 0 ^ N ) ) |
| 201 | 200 | adantl | |- ( ( ph /\ x = 0 ) -> ( ( sin ` x ) ^ N ) = ( 0 ^ N ) ) |
| 202 | 7 | adantr | |- ( ( ph /\ x = 0 ) -> N e. NN ) |
| 203 | 202 | 0expd | |- ( ( ph /\ x = 0 ) -> ( 0 ^ N ) = 0 ) |
| 204 | 201 203 | eqtrd | |- ( ( ph /\ x = 0 ) -> ( ( sin ` x ) ^ N ) = 0 ) |
| 205 | 204 | oveq1d | |- ( ( ph /\ x = 0 ) -> ( ( ( sin ` x ) ^ N ) x. -u ( cos ` x ) ) = ( 0 x. -u ( cos ` x ) ) ) |
| 206 | id | |- ( x = 0 -> x = 0 ) |
|
| 207 | 0cn | |- 0 e. CC |
|
| 208 | 206 207 | eqeltrdi | |- ( x = 0 -> x e. CC ) |
| 209 | coscl | |- ( x e. CC -> ( cos ` x ) e. CC ) |
|
| 210 | 209 | negcld | |- ( x e. CC -> -u ( cos ` x ) e. CC ) |
| 211 | 208 210 | syl | |- ( x = 0 -> -u ( cos ` x ) e. CC ) |
| 212 | 211 | adantl | |- ( ( ph /\ x = 0 ) -> -u ( cos ` x ) e. CC ) |
| 213 | 212 | mul02d | |- ( ( ph /\ x = 0 ) -> ( 0 x. -u ( cos ` x ) ) = 0 ) |
| 214 | 205 213 | eqtrd | |- ( ( ph /\ x = 0 ) -> ( ( ( sin ` x ) ^ N ) x. -u ( cos ` x ) ) = 0 ) |
| 215 | fveq2 | |- ( x = _pi -> ( sin ` x ) = ( sin ` _pi ) ) |
|
| 216 | sinpi | |- ( sin ` _pi ) = 0 |
|
| 217 | 215 216 | eqtrdi | |- ( x = _pi -> ( sin ` x ) = 0 ) |
| 218 | 217 | oveq1d | |- ( x = _pi -> ( ( sin ` x ) ^ N ) = ( 0 ^ N ) ) |
| 219 | 218 | adantl | |- ( ( ph /\ x = _pi ) -> ( ( sin ` x ) ^ N ) = ( 0 ^ N ) ) |
| 220 | 7 | adantr | |- ( ( ph /\ x = _pi ) -> N e. NN ) |
| 221 | 220 | 0expd | |- ( ( ph /\ x = _pi ) -> ( 0 ^ N ) = 0 ) |
| 222 | 219 221 | eqtrd | |- ( ( ph /\ x = _pi ) -> ( ( sin ` x ) ^ N ) = 0 ) |
| 223 | 222 | oveq1d | |- ( ( ph /\ x = _pi ) -> ( ( ( sin ` x ) ^ N ) x. -u ( cos ` x ) ) = ( 0 x. -u ( cos ` x ) ) ) |
| 224 | id | |- ( x = _pi -> x = _pi ) |
|
| 225 | picn | |- _pi e. CC |
|
| 226 | 224 225 | eqeltrdi | |- ( x = _pi -> x e. CC ) |
| 227 | 226 | coscld | |- ( x = _pi -> ( cos ` x ) e. CC ) |
| 228 | 227 | negcld | |- ( x = _pi -> -u ( cos ` x ) e. CC ) |
| 229 | 228 | adantl | |- ( ( ph /\ x = _pi ) -> -u ( cos ` x ) e. CC ) |
| 230 | 229 | mul02d | |- ( ( ph /\ x = _pi ) -> ( 0 x. -u ( cos ` x ) ) = 0 ) |
| 231 | 223 230 | eqtrd | |- ( ( ph /\ x = _pi ) -> ( ( ( sin ` x ) ^ N ) x. -u ( cos ` x ) ) = 0 ) |
| 232 | 11 13 16 42 57 83 84 106 123 184 196 214 231 | itgparts | |- ( ph -> S. ( 0 (,) _pi ) ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) _d x = ( ( 0 - 0 ) - S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x ) ) |
| 233 | df-neg | |- -u S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x = ( 0 - S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x ) |
|
| 234 | 233 | a1i | |- ( ph -> -u S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x = ( 0 - S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x ) ) |
| 235 | 9 232 234 | 3eqtr4a | |- ( ph -> S. ( 0 (,) _pi ) ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) _d x = -u S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x ) |
| 236 | 79 81 81 | mulassd | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. ( cos ` x ) ) = ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( ( cos ` x ) x. ( cos ` x ) ) ) ) |
| 237 | sqval | |- ( ( cos ` x ) e. CC -> ( ( cos ` x ) ^ 2 ) = ( ( cos ` x ) x. ( cos ` x ) ) ) |
|
| 238 | 237 | eqcomd | |- ( ( cos ` x ) e. CC -> ( ( cos ` x ) x. ( cos ` x ) ) = ( ( cos ` x ) ^ 2 ) ) |
| 239 | 80 238 | syl | |- ( x e. ( 0 (,) _pi ) -> ( ( cos ` x ) x. ( cos ` x ) ) = ( ( cos ` x ) ^ 2 ) ) |
| 240 | 239 | adantl | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( cos ` x ) x. ( cos ` x ) ) = ( ( cos ` x ) ^ 2 ) ) |
| 241 | 240 | oveq2d | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( ( cos ` x ) x. ( cos ` x ) ) ) = ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( ( cos ` x ) ^ 2 ) ) ) |
| 242 | 80 | sqcld | |- ( x e. ( 0 (,) _pi ) -> ( ( cos ` x ) ^ 2 ) e. CC ) |
| 243 | 242 | adantl | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( cos ` x ) ^ 2 ) e. CC ) |
| 244 | 73 78 243 | mulassd | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( ( cos ` x ) ^ 2 ) ) = ( N x. ( ( ( sin ` x ) ^ ( N - 1 ) ) x. ( ( cos ` x ) ^ 2 ) ) ) ) |
| 245 | 241 244 | eqtrd | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( ( cos ` x ) x. ( cos ` x ) ) ) = ( N x. ( ( ( sin ` x ) ^ ( N - 1 ) ) x. ( ( cos ` x ) ^ 2 ) ) ) ) |
| 246 | 78 243 | mulcomd | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( ( sin ` x ) ^ ( N - 1 ) ) x. ( ( cos ` x ) ^ 2 ) ) = ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) |
| 247 | 246 | oveq2d | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( N x. ( ( ( sin ` x ) ^ ( N - 1 ) ) x. ( ( cos ` x ) ^ 2 ) ) ) = ( N x. ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) ) |
| 248 | 236 245 247 | 3eqtrd | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. ( cos ` x ) ) = ( N x. ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) ) |
| 249 | 248 | negeqd | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> -u ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. ( cos ` x ) ) = -u ( N x. ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) ) |
| 250 | 82 81 | mulneg2d | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) = -u ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. ( cos ` x ) ) ) |
| 251 | 243 78 | mulcld | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) e. CC ) |
| 252 | 73 251 | mulneg1d | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( -u N x. ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) = -u ( N x. ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) ) |
| 253 | 249 250 252 | 3eqtr4d | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) = ( -u N x. ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) ) |
| 254 | 253 | itgeq2dv | |- ( ph -> S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x = S. ( 0 (,) _pi ) ( -u N x. ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) _d x ) |
| 255 | 59 | negcld | |- ( ph -> -u N e. CC ) |
| 256 | 43 | sqcld | |- ( x e. ( 0 [,] _pi ) -> ( ( cos ` x ) ^ 2 ) e. CC ) |
| 257 | 256 | adantl | |- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( cos ` x ) ^ 2 ) e. CC ) |
| 258 | 257 109 | mulcld | |- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) e. CC ) |
| 259 | 6 | fvmpt2 | |- ( ( x e. CC /\ ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) e. CC ) -> ( M ` x ) = ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) |
| 260 | 23 258 259 | syl2anc | |- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( M ` x ) = ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) |
| 261 | 260 | eqcomd | |- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) = ( M ` x ) ) |
| 262 | 261 | mpteq2dva | |- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) = ( x e. ( 0 [,] _pi ) |-> ( M ` x ) ) ) |
| 263 | nfmpt1 | |- F/_ x ( x e. CC |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) |
|
| 264 | 6 263 | nfcxfr | |- F/_ x M |
| 265 | nfcv | |- F/_ x cos |
|
| 266 | 2nn0 | |- 2 e. NN0 |
|
| 267 | 266 | a1i | |- ( ph -> 2 e. NN0 ) |
| 268 | 265 53 267 | expcnfg | |- ( ph -> ( x e. CC |-> ( ( cos ` x ) ^ 2 ) ) e. ( CC -cn-> CC ) ) |
| 269 | 268 63 | mulcncf | |- ( ph -> ( x e. CC |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) e. ( CC -cn-> CC ) ) |
| 270 | 6 269 | eqeltrid | |- ( ph -> M e. ( CC -cn-> CC ) ) |
| 271 | 264 270 40 | cncfmptss | |- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( M ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
| 272 | 262 271 | eqeltrd | |- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
| 273 | cniccibl | |- ( ( 0 e. RR /\ _pi e. RR /\ ( x e. ( 0 [,] _pi ) |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) -> ( x e. ( 0 [,] _pi ) |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) e. L^1 ) |
|
| 274 | 11 13 272 273 | syl3anc | |- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) e. L^1 ) |
| 275 | 86 88 258 274 | iblss | |- ( ph -> ( x e. ( 0 (,) _pi ) |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) e. L^1 ) |
| 276 | 255 251 275 | itgmulc2 | |- ( ph -> ( -u N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) = S. ( 0 (,) _pi ) ( -u N x. ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) _d x ) |
| 277 | 254 276 | eqtr4d | |- ( ph -> S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x = ( -u N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) ) |
| 278 | 277 | negeqd | |- ( ph -> -u S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x = -u ( -u N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) ) |
| 279 | 235 278 | eqtrd | |- ( ph -> S. ( 0 (,) _pi ) ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) _d x = -u ( -u N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) ) |
| 280 | 251 275 | itgcl | |- ( ph -> S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x e. CC ) |
| 281 | 59 280 | mulneg1d | |- ( ph -> ( -u N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) = -u ( N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) ) |
| 282 | 281 | negeqd | |- ( ph -> -u ( -u N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) = -u -u ( N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) ) |
| 283 | 59 280 | mulcld | |- ( ph -> ( N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) e. CC ) |
| 284 | 283 | negnegd | |- ( ph -> -u -u ( N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) = ( N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) ) |
| 285 | 279 282 284 | 3eqtrd | |- ( ph -> S. ( 0 (,) _pi ) ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) _d x = ( N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) ) |