This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Domain and codomain of the sine function. (Contributed by Paul Chapman, 22-Oct-2007) (Revised by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sinf | |- sin : CC --> CC |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sin | |- sin = ( x e. CC |-> ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) / ( 2 x. _i ) ) ) |
|
| 2 | ax-icn | |- _i e. CC |
|
| 3 | mulcl | |- ( ( _i e. CC /\ x e. CC ) -> ( _i x. x ) e. CC ) |
|
| 4 | 2 3 | mpan | |- ( x e. CC -> ( _i x. x ) e. CC ) |
| 5 | efcl | |- ( ( _i x. x ) e. CC -> ( exp ` ( _i x. x ) ) e. CC ) |
|
| 6 | 4 5 | syl | |- ( x e. CC -> ( exp ` ( _i x. x ) ) e. CC ) |
| 7 | negicn | |- -u _i e. CC |
|
| 8 | mulcl | |- ( ( -u _i e. CC /\ x e. CC ) -> ( -u _i x. x ) e. CC ) |
|
| 9 | 7 8 | mpan | |- ( x e. CC -> ( -u _i x. x ) e. CC ) |
| 10 | efcl | |- ( ( -u _i x. x ) e. CC -> ( exp ` ( -u _i x. x ) ) e. CC ) |
|
| 11 | 9 10 | syl | |- ( x e. CC -> ( exp ` ( -u _i x. x ) ) e. CC ) |
| 12 | 6 11 | subcld | |- ( x e. CC -> ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) e. CC ) |
| 13 | 2mulicn | |- ( 2 x. _i ) e. CC |
|
| 14 | 2muline0 | |- ( 2 x. _i ) =/= 0 |
|
| 15 | divcl | |- ( ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) e. CC /\ ( 2 x. _i ) e. CC /\ ( 2 x. _i ) =/= 0 ) -> ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) / ( 2 x. _i ) ) e. CC ) |
|
| 16 | 13 14 15 | mp3an23 | |- ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) e. CC -> ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) / ( 2 x. _i ) ) e. CC ) |
| 17 | 12 16 | syl | |- ( x e. CC -> ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) / ( 2 x. _i ) ) e. CC ) |
| 18 | 1 17 | fmpti | |- sin : CC --> CC |