This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A recursive formula for the integral of sin^N on the interval (0,π) . (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgsinexp.1 | |- I = ( n e. NN0 |-> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x ) |
|
| itgsinexp.2 | |- ( ph -> N e. ( ZZ>= ` 2 ) ) |
||
| Assertion | itgsinexp | |- ( ph -> ( I ` N ) = ( ( ( N - 1 ) / N ) x. ( I ` ( N - 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgsinexp.1 | |- I = ( n e. NN0 |-> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x ) |
|
| 2 | itgsinexp.2 | |- ( ph -> N e. ( ZZ>= ` 2 ) ) |
|
| 3 | eluzelz | |- ( N e. ( ZZ>= ` 2 ) -> N e. ZZ ) |
|
| 4 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 5 | 2 3 4 | 3syl | |- ( ph -> N e. CC ) |
| 6 | 1cnd | |- ( ph -> 1 e. CC ) |
|
| 7 | 5 6 | npcand | |- ( ph -> ( ( N - 1 ) + 1 ) = N ) |
| 8 | 7 | eqcomd | |- ( ph -> N = ( ( N - 1 ) + 1 ) ) |
| 9 | 8 | oveq1d | |- ( ph -> ( N x. ( I ` N ) ) = ( ( ( N - 1 ) + 1 ) x. ( I ` N ) ) ) |
| 10 | uz2m1nn | |- ( N e. ( ZZ>= ` 2 ) -> ( N - 1 ) e. NN ) |
|
| 11 | 2 10 | syl | |- ( ph -> ( N - 1 ) e. NN ) |
| 12 | 11 | nncnd | |- ( ph -> ( N - 1 ) e. CC ) |
| 13 | 1 | a1i | |- ( ph -> I = ( n e. NN0 |-> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x ) ) |
| 14 | oveq2 | |- ( n = N -> ( ( sin ` x ) ^ n ) = ( ( sin ` x ) ^ N ) ) |
|
| 15 | 14 | ad2antlr | |- ( ( ( ph /\ n = N ) /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ n ) = ( ( sin ` x ) ^ N ) ) |
| 16 | 15 | itgeq2dv | |- ( ( ph /\ n = N ) -> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x = S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x ) |
| 17 | 2cnd | |- ( ph -> 2 e. CC ) |
|
| 18 | npcan | |- ( ( N e. CC /\ 2 e. CC ) -> ( ( N - 2 ) + 2 ) = N ) |
|
| 19 | 18 | eqcomd | |- ( ( N e. CC /\ 2 e. CC ) -> N = ( ( N - 2 ) + 2 ) ) |
| 20 | 5 17 19 | syl2anc | |- ( ph -> N = ( ( N - 2 ) + 2 ) ) |
| 21 | uznn0sub | |- ( N e. ( ZZ>= ` 2 ) -> ( N - 2 ) e. NN0 ) |
|
| 22 | 2 21 | syl | |- ( ph -> ( N - 2 ) e. NN0 ) |
| 23 | 2nn0 | |- 2 e. NN0 |
|
| 24 | 23 | a1i | |- ( ph -> 2 e. NN0 ) |
| 25 | 22 24 | nn0addcld | |- ( ph -> ( ( N - 2 ) + 2 ) e. NN0 ) |
| 26 | 20 25 | eqeltrd | |- ( ph -> N e. NN0 ) |
| 27 | itgex | |- S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x e. _V |
|
| 28 | 27 | a1i | |- ( ph -> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x e. _V ) |
| 29 | 13 16 26 28 | fvmptd | |- ( ph -> ( I ` N ) = S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x ) |
| 30 | ioosscn | |- ( 0 (,) _pi ) C_ CC |
|
| 31 | 30 | sseli | |- ( x e. ( 0 (,) _pi ) -> x e. CC ) |
| 32 | 31 | sincld | |- ( x e. ( 0 (,) _pi ) -> ( sin ` x ) e. CC ) |
| 33 | 32 | adantl | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( sin ` x ) e. CC ) |
| 34 | 26 | adantr | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> N e. NN0 ) |
| 35 | 33 34 | expcld | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ N ) e. CC ) |
| 36 | ioossicc | |- ( 0 (,) _pi ) C_ ( 0 [,] _pi ) |
|
| 37 | 36 | a1i | |- ( ph -> ( 0 (,) _pi ) C_ ( 0 [,] _pi ) ) |
| 38 | ioombl | |- ( 0 (,) _pi ) e. dom vol |
|
| 39 | 38 | a1i | |- ( ph -> ( 0 (,) _pi ) e. dom vol ) |
| 40 | 0re | |- 0 e. RR |
|
| 41 | pire | |- _pi e. RR |
|
| 42 | iccssre | |- ( ( 0 e. RR /\ _pi e. RR ) -> ( 0 [,] _pi ) C_ RR ) |
|
| 43 | 40 41 42 | mp2an | |- ( 0 [,] _pi ) C_ RR |
| 44 | ax-resscn | |- RR C_ CC |
|
| 45 | 43 44 | sstri | |- ( 0 [,] _pi ) C_ CC |
| 46 | 45 | sseli | |- ( x e. ( 0 [,] _pi ) -> x e. CC ) |
| 47 | 46 | sincld | |- ( x e. ( 0 [,] _pi ) -> ( sin ` x ) e. CC ) |
| 48 | 47 | adantl | |- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( sin ` x ) e. CC ) |
| 49 | 26 | adantr | |- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> N e. NN0 ) |
| 50 | 48 49 | expcld | |- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( sin ` x ) ^ N ) e. CC ) |
| 51 | 40 | a1i | |- ( ph -> 0 e. RR ) |
| 52 | 41 | a1i | |- ( ph -> _pi e. RR ) |
| 53 | 46 | adantl | |- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> x e. CC ) |
| 54 | eqid | |- ( x e. CC |-> ( ( sin ` x ) ^ N ) ) = ( x e. CC |-> ( ( sin ` x ) ^ N ) ) |
|
| 55 | 54 | fvmpt2 | |- ( ( x e. CC /\ ( ( sin ` x ) ^ N ) e. CC ) -> ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ` x ) = ( ( sin ` x ) ^ N ) ) |
| 56 | 53 50 55 | syl2anc | |- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ` x ) = ( ( sin ` x ) ^ N ) ) |
| 57 | 56 | eqcomd | |- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( sin ` x ) ^ N ) = ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ` x ) ) |
| 58 | 57 | mpteq2dva | |- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ N ) ) = ( x e. ( 0 [,] _pi ) |-> ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ` x ) ) ) |
| 59 | nfmpt1 | |- F/_ x ( x e. CC |-> ( ( sin ` x ) ^ N ) ) |
|
| 60 | nfcv | |- F/_ x sin |
|
| 61 | sincn | |- sin e. ( CC -cn-> CC ) |
|
| 62 | 61 | a1i | |- ( ph -> sin e. ( CC -cn-> CC ) ) |
| 63 | 60 62 26 | expcnfg | |- ( ph -> ( x e. CC |-> ( ( sin ` x ) ^ N ) ) e. ( CC -cn-> CC ) ) |
| 64 | 45 | a1i | |- ( ph -> ( 0 [,] _pi ) C_ CC ) |
| 65 | 59 63 64 | cncfmptss | |- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
| 66 | 58 65 | eqeltrd | |- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ N ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
| 67 | cniccibl | |- ( ( 0 e. RR /\ _pi e. RR /\ ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ N ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) -> ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ N ) ) e. L^1 ) |
|
| 68 | 51 52 66 67 | syl3anc | |- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ N ) ) e. L^1 ) |
| 69 | 37 39 50 68 | iblss | |- ( ph -> ( x e. ( 0 (,) _pi ) |-> ( ( sin ` x ) ^ N ) ) e. L^1 ) |
| 70 | 35 69 | itgcl | |- ( ph -> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x e. CC ) |
| 71 | 29 70 | eqeltrd | |- ( ph -> ( I ` N ) e. CC ) |
| 72 | 12 71 | adddirp1d | |- ( ph -> ( ( ( N - 1 ) + 1 ) x. ( I ` N ) ) = ( ( ( N - 1 ) x. ( I ` N ) ) + ( I ` N ) ) ) |
| 73 | eluz2b2 | |- ( N e. ( ZZ>= ` 2 ) <-> ( N e. NN /\ 1 < N ) ) |
|
| 74 | 2 73 | sylib | |- ( ph -> ( N e. NN /\ 1 < N ) ) |
| 75 | 74 | simpld | |- ( ph -> N e. NN ) |
| 76 | expm1t | |- ( ( ( sin ` x ) e. CC /\ N e. NN ) -> ( ( sin ` x ) ^ N ) = ( ( ( sin ` x ) ^ ( N - 1 ) ) x. ( sin ` x ) ) ) |
|
| 77 | 32 75 76 | syl2anr | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ N ) = ( ( ( sin ` x ) ^ ( N - 1 ) ) x. ( sin ` x ) ) ) |
| 78 | 77 | itgeq2dv | |- ( ph -> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x = S. ( 0 (,) _pi ) ( ( ( sin ` x ) ^ ( N - 1 ) ) x. ( sin ` x ) ) _d x ) |
| 79 | eqid | |- ( x e. CC |-> ( ( sin ` x ) ^ ( N - 1 ) ) ) = ( x e. CC |-> ( ( sin ` x ) ^ ( N - 1 ) ) ) |
|
| 80 | eqid | |- ( x e. CC |-> -u ( cos ` x ) ) = ( x e. CC |-> -u ( cos ` x ) ) |
|
| 81 | eqid | |- ( x e. CC |-> ( ( ( N - 1 ) x. ( ( sin ` x ) ^ ( ( N - 1 ) - 1 ) ) ) x. ( cos ` x ) ) ) = ( x e. CC |-> ( ( ( N - 1 ) x. ( ( sin ` x ) ^ ( ( N - 1 ) - 1 ) ) ) x. ( cos ` x ) ) ) |
|
| 82 | eqid | |- ( x e. CC |-> ( ( ( sin ` x ) ^ ( N - 1 ) ) x. ( sin ` x ) ) ) = ( x e. CC |-> ( ( ( sin ` x ) ^ ( N - 1 ) ) x. ( sin ` x ) ) ) |
|
| 83 | eqid | |- ( x e. CC |-> ( ( ( ( N - 1 ) x. ( ( sin ` x ) ^ ( ( N - 1 ) - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) ) = ( x e. CC |-> ( ( ( ( N - 1 ) x. ( ( sin ` x ) ^ ( ( N - 1 ) - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) ) |
|
| 84 | eqid | |- ( x e. CC |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( ( N - 1 ) - 1 ) ) ) ) = ( x e. CC |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( ( N - 1 ) - 1 ) ) ) ) |
|
| 85 | 79 80 81 82 83 84 11 | itgsinexplem1 | |- ( ph -> S. ( 0 (,) _pi ) ( ( ( sin ` x ) ^ ( N - 1 ) ) x. ( sin ` x ) ) _d x = ( ( N - 1 ) x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( ( N - 1 ) - 1 ) ) ) _d x ) ) |
| 86 | 5 6 6 | subsub4d | |- ( ph -> ( ( N - 1 ) - 1 ) = ( N - ( 1 + 1 ) ) ) |
| 87 | 1p1e2 | |- ( 1 + 1 ) = 2 |
|
| 88 | 87 | a1i | |- ( ph -> ( 1 + 1 ) = 2 ) |
| 89 | 88 | oveq2d | |- ( ph -> ( N - ( 1 + 1 ) ) = ( N - 2 ) ) |
| 90 | 86 89 | eqtrd | |- ( ph -> ( ( N - 1 ) - 1 ) = ( N - 2 ) ) |
| 91 | 90 | adantr | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( N - 1 ) - 1 ) = ( N - 2 ) ) |
| 92 | 91 | oveq2d | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ ( ( N - 1 ) - 1 ) ) = ( ( sin ` x ) ^ ( N - 2 ) ) ) |
| 93 | 92 | oveq2d | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( ( N - 1 ) - 1 ) ) ) = ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) ) |
| 94 | 93 | itgeq2dv | |- ( ph -> S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( ( N - 1 ) - 1 ) ) ) _d x = S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) _d x ) |
| 95 | 94 | oveq2d | |- ( ph -> ( ( N - 1 ) x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( ( N - 1 ) - 1 ) ) ) _d x ) = ( ( N - 1 ) x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) _d x ) ) |
| 96 | sincossq | |- ( x e. CC -> ( ( ( sin ` x ) ^ 2 ) + ( ( cos ` x ) ^ 2 ) ) = 1 ) |
|
| 97 | 1cnd | |- ( x e. CC -> 1 e. CC ) |
|
| 98 | sincl | |- ( x e. CC -> ( sin ` x ) e. CC ) |
|
| 99 | 98 | sqcld | |- ( x e. CC -> ( ( sin ` x ) ^ 2 ) e. CC ) |
| 100 | coscl | |- ( x e. CC -> ( cos ` x ) e. CC ) |
|
| 101 | 100 | sqcld | |- ( x e. CC -> ( ( cos ` x ) ^ 2 ) e. CC ) |
| 102 | 97 99 101 | subaddd | |- ( x e. CC -> ( ( 1 - ( ( sin ` x ) ^ 2 ) ) = ( ( cos ` x ) ^ 2 ) <-> ( ( ( sin ` x ) ^ 2 ) + ( ( cos ` x ) ^ 2 ) ) = 1 ) ) |
| 103 | 96 102 | mpbird | |- ( x e. CC -> ( 1 - ( ( sin ` x ) ^ 2 ) ) = ( ( cos ` x ) ^ 2 ) ) |
| 104 | 103 | eqcomd | |- ( x e. CC -> ( ( cos ` x ) ^ 2 ) = ( 1 - ( ( sin ` x ) ^ 2 ) ) ) |
| 105 | 31 104 | syl | |- ( x e. ( 0 (,) _pi ) -> ( ( cos ` x ) ^ 2 ) = ( 1 - ( ( sin ` x ) ^ 2 ) ) ) |
| 106 | 105 | oveq1d | |- ( x e. ( 0 (,) _pi ) -> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) = ( ( 1 - ( ( sin ` x ) ^ 2 ) ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) ) |
| 107 | 106 | adantl | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) = ( ( 1 - ( ( sin ` x ) ^ 2 ) ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) ) |
| 108 | 107 | itgeq2dv | |- ( ph -> S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) _d x = S. ( 0 (,) _pi ) ( ( 1 - ( ( sin ` x ) ^ 2 ) ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) _d x ) |
| 109 | 1cnd | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> 1 e. CC ) |
|
| 110 | 32 | sqcld | |- ( x e. ( 0 (,) _pi ) -> ( ( sin ` x ) ^ 2 ) e. CC ) |
| 111 | 110 | adantl | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ 2 ) e. CC ) |
| 112 | 90 | eqcomd | |- ( ph -> ( N - 2 ) = ( ( N - 1 ) - 1 ) ) |
| 113 | nnm1nn0 | |- ( ( N - 1 ) e. NN -> ( ( N - 1 ) - 1 ) e. NN0 ) |
|
| 114 | 11 113 | syl | |- ( ph -> ( ( N - 1 ) - 1 ) e. NN0 ) |
| 115 | 112 114 | eqeltrd | |- ( ph -> ( N - 2 ) e. NN0 ) |
| 116 | 115 | adantr | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( N - 2 ) e. NN0 ) |
| 117 | 33 116 | expcld | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ ( N - 2 ) ) e. CC ) |
| 118 | 109 111 117 | subdird | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( 1 - ( ( sin ` x ) ^ 2 ) ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) = ( ( 1 x. ( ( sin ` x ) ^ ( N - 2 ) ) ) - ( ( ( sin ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) ) ) |
| 119 | 117 | mullidd | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( 1 x. ( ( sin ` x ) ^ ( N - 2 ) ) ) = ( ( sin ` x ) ^ ( N - 2 ) ) ) |
| 120 | 23 | a1i | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> 2 e. NN0 ) |
| 121 | 33 116 120 | expaddd | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ ( 2 + ( N - 2 ) ) ) = ( ( ( sin ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) ) |
| 122 | 17 5 | pncan3d | |- ( ph -> ( 2 + ( N - 2 ) ) = N ) |
| 123 | 122 | oveq2d | |- ( ph -> ( ( sin ` x ) ^ ( 2 + ( N - 2 ) ) ) = ( ( sin ` x ) ^ N ) ) |
| 124 | 123 | adantr | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ ( 2 + ( N - 2 ) ) ) = ( ( sin ` x ) ^ N ) ) |
| 125 | 121 124 | eqtr3d | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( ( sin ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) = ( ( sin ` x ) ^ N ) ) |
| 126 | 119 125 | oveq12d | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( 1 x. ( ( sin ` x ) ^ ( N - 2 ) ) ) - ( ( ( sin ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) ) = ( ( ( sin ` x ) ^ ( N - 2 ) ) - ( ( sin ` x ) ^ N ) ) ) |
| 127 | 118 126 | eqtrd | |- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( 1 - ( ( sin ` x ) ^ 2 ) ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) = ( ( ( sin ` x ) ^ ( N - 2 ) ) - ( ( sin ` x ) ^ N ) ) ) |
| 128 | 127 | itgeq2dv | |- ( ph -> S. ( 0 (,) _pi ) ( ( 1 - ( ( sin ` x ) ^ 2 ) ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) _d x = S. ( 0 (,) _pi ) ( ( ( sin ` x ) ^ ( N - 2 ) ) - ( ( sin ` x ) ^ N ) ) _d x ) |
| 129 | 115 | adantr | |- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( N - 2 ) e. NN0 ) |
| 130 | 48 129 | expcld | |- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( sin ` x ) ^ ( N - 2 ) ) e. CC ) |
| 131 | eqid | |- ( x e. CC |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) = ( x e. CC |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) |
|
| 132 | 131 | fvmpt2 | |- ( ( x e. CC /\ ( ( sin ` x ) ^ ( N - 2 ) ) e. CC ) -> ( ( x e. CC |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) ` x ) = ( ( sin ` x ) ^ ( N - 2 ) ) ) |
| 133 | 53 130 132 | syl2anc | |- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( x e. CC |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) ` x ) = ( ( sin ` x ) ^ ( N - 2 ) ) ) |
| 134 | 133 | eqcomd | |- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( sin ` x ) ^ ( N - 2 ) ) = ( ( x e. CC |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) ` x ) ) |
| 135 | 134 | mpteq2dva | |- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) = ( x e. ( 0 [,] _pi ) |-> ( ( x e. CC |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) ` x ) ) ) |
| 136 | nfmpt1 | |- F/_ x ( x e. CC |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) |
|
| 137 | 60 62 115 | expcnfg | |- ( ph -> ( x e. CC |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) e. ( CC -cn-> CC ) ) |
| 138 | 136 137 64 | cncfmptss | |- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( x e. CC |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
| 139 | 135 138 | eqeltrd | |- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
| 140 | cniccibl | |- ( ( 0 e. RR /\ _pi e. RR /\ ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) -> ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) e. L^1 ) |
|
| 141 | 51 52 139 140 | syl3anc | |- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) e. L^1 ) |
| 142 | 37 39 130 141 | iblss | |- ( ph -> ( x e. ( 0 (,) _pi ) |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) e. L^1 ) |
| 143 | 117 142 35 69 | itgsub | |- ( ph -> S. ( 0 (,) _pi ) ( ( ( sin ` x ) ^ ( N - 2 ) ) - ( ( sin ` x ) ^ N ) ) _d x = ( S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N - 2 ) ) _d x - S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x ) ) |
| 144 | 108 128 143 | 3eqtrd | |- ( ph -> S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) _d x = ( S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N - 2 ) ) _d x - S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x ) ) |
| 145 | 144 | oveq2d | |- ( ph -> ( ( N - 1 ) x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) _d x ) = ( ( N - 1 ) x. ( S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N - 2 ) ) _d x - S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x ) ) ) |
| 146 | 85 95 145 | 3eqtrd | |- ( ph -> S. ( 0 (,) _pi ) ( ( ( sin ` x ) ^ ( N - 1 ) ) x. ( sin ` x ) ) _d x = ( ( N - 1 ) x. ( S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N - 2 ) ) _d x - S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x ) ) ) |
| 147 | 29 78 146 | 3eqtrd | |- ( ph -> ( I ` N ) = ( ( N - 1 ) x. ( S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N - 2 ) ) _d x - S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x ) ) ) |
| 148 | oveq2 | |- ( n = ( N - 2 ) -> ( ( sin ` x ) ^ n ) = ( ( sin ` x ) ^ ( N - 2 ) ) ) |
|
| 149 | 148 | adantr | |- ( ( n = ( N - 2 ) /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ n ) = ( ( sin ` x ) ^ ( N - 2 ) ) ) |
| 150 | 149 | itgeq2dv | |- ( n = ( N - 2 ) -> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x = S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N - 2 ) ) _d x ) |
| 151 | itgex | |- S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N - 2 ) ) _d x e. _V |
|
| 152 | 151 | a1i | |- ( ph -> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N - 2 ) ) _d x e. _V ) |
| 153 | 1 150 115 152 | fvmptd3 | |- ( ph -> ( I ` ( N - 2 ) ) = S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N - 2 ) ) _d x ) |
| 154 | 153 29 | oveq12d | |- ( ph -> ( ( I ` ( N - 2 ) ) - ( I ` N ) ) = ( S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N - 2 ) ) _d x - S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x ) ) |
| 155 | 154 | oveq2d | |- ( ph -> ( ( N - 1 ) x. ( ( I ` ( N - 2 ) ) - ( I ` N ) ) ) = ( ( N - 1 ) x. ( S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N - 2 ) ) _d x - S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x ) ) ) |
| 156 | 117 142 | itgcl | |- ( ph -> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N - 2 ) ) _d x e. CC ) |
| 157 | 153 156 | eqeltrd | |- ( ph -> ( I ` ( N - 2 ) ) e. CC ) |
| 158 | 12 157 71 | subdid | |- ( ph -> ( ( N - 1 ) x. ( ( I ` ( N - 2 ) ) - ( I ` N ) ) ) = ( ( ( N - 1 ) x. ( I ` ( N - 2 ) ) ) - ( ( N - 1 ) x. ( I ` N ) ) ) ) |
| 159 | 147 155 158 | 3eqtr2d | |- ( ph -> ( I ` N ) = ( ( ( N - 1 ) x. ( I ` ( N - 2 ) ) ) - ( ( N - 1 ) x. ( I ` N ) ) ) ) |
| 160 | 159 | eqcomd | |- ( ph -> ( ( ( N - 1 ) x. ( I ` ( N - 2 ) ) ) - ( ( N - 1 ) x. ( I ` N ) ) ) = ( I ` N ) ) |
| 161 | 12 157 | mulcld | |- ( ph -> ( ( N - 1 ) x. ( I ` ( N - 2 ) ) ) e. CC ) |
| 162 | 12 71 | mulcld | |- ( ph -> ( ( N - 1 ) x. ( I ` N ) ) e. CC ) |
| 163 | 161 162 71 | subaddd | |- ( ph -> ( ( ( ( N - 1 ) x. ( I ` ( N - 2 ) ) ) - ( ( N - 1 ) x. ( I ` N ) ) ) = ( I ` N ) <-> ( ( ( N - 1 ) x. ( I ` N ) ) + ( I ` N ) ) = ( ( N - 1 ) x. ( I ` ( N - 2 ) ) ) ) ) |
| 164 | 160 163 | mpbid | |- ( ph -> ( ( ( N - 1 ) x. ( I ` N ) ) + ( I ` N ) ) = ( ( N - 1 ) x. ( I ` ( N - 2 ) ) ) ) |
| 165 | 9 72 164 | 3eqtrd | |- ( ph -> ( N x. ( I ` N ) ) = ( ( N - 1 ) x. ( I ` ( N - 2 ) ) ) ) |
| 166 | 165 | oveq1d | |- ( ph -> ( ( N x. ( I ` N ) ) / N ) = ( ( ( N - 1 ) x. ( I ` ( N - 2 ) ) ) / N ) ) |
| 167 | 75 | nnne0d | |- ( ph -> N =/= 0 ) |
| 168 | 71 5 167 | divcan3d | |- ( ph -> ( ( N x. ( I ` N ) ) / N ) = ( I ` N ) ) |
| 169 | 12 157 5 167 | div23d | |- ( ph -> ( ( ( N - 1 ) x. ( I ` ( N - 2 ) ) ) / N ) = ( ( ( N - 1 ) / N ) x. ( I ` ( N - 2 ) ) ) ) |
| 170 | 166 168 169 | 3eqtr3d | |- ( ph -> ( I ` N ) = ( ( ( N - 1 ) / N ) x. ( I ` ( N - 2 ) ) ) ) |