This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 3-Jul-1994) (Revised by Andrew Salmon, 27-Aug-2011) Avoid ax-13 . (Revised by GG, 19-May-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfssf.1 | |- F/_ x A |
|
| dfssf.2 | |- F/_ x B |
||
| Assertion | dfssf | |- ( A C_ B <-> A. x ( x e. A -> x e. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfssf.1 | |- F/_ x A |
|
| 2 | dfssf.2 | |- F/_ x B |
|
| 3 | df-ss | |- ( A C_ B <-> A. z ( z e. A -> z e. B ) ) |
|
| 4 | 1 | nfcri | |- F/ x z e. A |
| 5 | 2 | nfcri | |- F/ x z e. B |
| 6 | 4 5 | nfim | |- F/ x ( z e. A -> z e. B ) |
| 7 | nfv | |- F/ z ( x e. A -> x e. B ) |
|
| 8 | eleq1w | |- ( z = x -> ( z e. A <-> x e. A ) ) |
|
| 9 | eleq1w | |- ( z = x -> ( z e. B <-> x e. B ) ) |
|
| 10 | 8 9 | imbi12d | |- ( z = x -> ( ( z e. A -> z e. B ) <-> ( x e. A -> x e. B ) ) ) |
| 11 | 6 7 10 | cbvalv1 | |- ( A. z ( z e. A -> z e. B ) <-> A. x ( x e. A -> x e. B ) ) |
| 12 | 3 11 | bitri | |- ( A C_ B <-> A. x ( x e. A -> x e. B ) ) |