This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a complex differentiable function to the reals. (Contributed by Mario Carneiro, 10-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvres3 | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> ( S _D ( F |` S ) ) = ( ( CC _D F ) |` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldv | |- Rel ( S _D ( F |` S ) ) |
|
| 2 | recnprss | |- ( S e. { RR , CC } -> S C_ CC ) |
|
| 3 | 2 | ad2antrr | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> S C_ CC ) |
| 4 | simplr | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> F : A --> CC ) |
|
| 5 | simprr | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> S C_ dom ( CC _D F ) ) |
|
| 6 | ssidd | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> CC C_ CC ) |
|
| 7 | simprl | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> A C_ CC ) |
|
| 8 | 6 4 7 | dvbss | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> dom ( CC _D F ) C_ A ) |
| 9 | 5 8 | sstrd | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> S C_ A ) |
| 10 | 4 9 | fssresd | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> ( F |` S ) : S --> CC ) |
| 11 | ssidd | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> S C_ S ) |
|
| 12 | 3 10 11 | dvbss | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> dom ( S _D ( F |` S ) ) C_ S ) |
| 13 | ssdmres | |- ( S C_ dom ( CC _D F ) <-> dom ( ( CC _D F ) |` S ) = S ) |
|
| 14 | 5 13 | sylib | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> dom ( ( CC _D F ) |` S ) = S ) |
| 15 | 12 14 | sseqtrrd | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> dom ( S _D ( F |` S ) ) C_ dom ( ( CC _D F ) |` S ) ) |
| 16 | relssres | |- ( ( Rel ( S _D ( F |` S ) ) /\ dom ( S _D ( F |` S ) ) C_ dom ( ( CC _D F ) |` S ) ) -> ( ( S _D ( F |` S ) ) |` dom ( ( CC _D F ) |` S ) ) = ( S _D ( F |` S ) ) ) |
|
| 17 | 1 15 16 | sylancr | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> ( ( S _D ( F |` S ) ) |` dom ( ( CC _D F ) |` S ) ) = ( S _D ( F |` S ) ) ) |
| 18 | dvfg | |- ( S e. { RR , CC } -> ( S _D ( F |` S ) ) : dom ( S _D ( F |` S ) ) --> CC ) |
|
| 19 | 18 | ad2antrr | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> ( S _D ( F |` S ) ) : dom ( S _D ( F |` S ) ) --> CC ) |
| 20 | 19 | ffund | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> Fun ( S _D ( F |` S ) ) ) |
| 21 | dvres2 | |- ( ( ( CC C_ CC /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ CC ) ) -> ( ( CC _D F ) |` S ) C_ ( S _D ( F |` S ) ) ) |
|
| 22 | 6 4 7 3 21 | syl22anc | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> ( ( CC _D F ) |` S ) C_ ( S _D ( F |` S ) ) ) |
| 23 | funssres | |- ( ( Fun ( S _D ( F |` S ) ) /\ ( ( CC _D F ) |` S ) C_ ( S _D ( F |` S ) ) ) -> ( ( S _D ( F |` S ) ) |` dom ( ( CC _D F ) |` S ) ) = ( ( CC _D F ) |` S ) ) |
|
| 24 | 20 22 23 | syl2anc | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> ( ( S _D ( F |` S ) ) |` dom ( ( CC _D F ) |` S ) ) = ( ( CC _D F ) |` S ) ) |
| 25 | 17 24 | eqtr3d | |- ( ( ( S e. { RR , CC } /\ F : A --> CC ) /\ ( A C_ CC /\ S C_ dom ( CC _D F ) ) ) -> ( S _D ( F |` S ) ) = ( ( CC _D F ) |` S ) ) |