This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The derivative of sin^N . (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dvsinexp.5 | |- ( ph -> N e. NN ) |
|
| Assertion | dvsinexp | |- ( ph -> ( CC _D ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ) = ( x e. CC |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvsinexp.5 | |- ( ph -> N e. NN ) |
|
| 2 | cnelprrecn | |- CC e. { RR , CC } |
|
| 3 | 2 | a1i | |- ( ph -> CC e. { RR , CC } ) |
| 4 | sinf | |- sin : CC --> CC |
|
| 5 | 4 | a1i | |- ( ph -> sin : CC --> CC ) |
| 6 | 5 | ffvelcdmda | |- ( ( ph /\ x e. CC ) -> ( sin ` x ) e. CC ) |
| 7 | cosf | |- cos : CC --> CC |
|
| 8 | 7 | a1i | |- ( ph -> cos : CC --> CC ) |
| 9 | 8 | ffvelcdmda | |- ( ( ph /\ x e. CC ) -> ( cos ` x ) e. CC ) |
| 10 | simpr | |- ( ( ph /\ y e. CC ) -> y e. CC ) |
|
| 11 | 1 | nnnn0d | |- ( ph -> N e. NN0 ) |
| 12 | 11 | adantr | |- ( ( ph /\ y e. CC ) -> N e. NN0 ) |
| 13 | 10 12 | expcld | |- ( ( ph /\ y e. CC ) -> ( y ^ N ) e. CC ) |
| 14 | 1 | nncnd | |- ( ph -> N e. CC ) |
| 15 | 14 | adantr | |- ( ( ph /\ y e. CC ) -> N e. CC ) |
| 16 | nnm1nn0 | |- ( N e. NN -> ( N - 1 ) e. NN0 ) |
|
| 17 | 1 16 | syl | |- ( ph -> ( N - 1 ) e. NN0 ) |
| 18 | 17 | adantr | |- ( ( ph /\ y e. CC ) -> ( N - 1 ) e. NN0 ) |
| 19 | 10 18 | expcld | |- ( ( ph /\ y e. CC ) -> ( y ^ ( N - 1 ) ) e. CC ) |
| 20 | 15 19 | mulcld | |- ( ( ph /\ y e. CC ) -> ( N x. ( y ^ ( N - 1 ) ) ) e. CC ) |
| 21 | dvsin | |- ( CC _D sin ) = cos |
|
| 22 | 5 | feqmptd | |- ( ph -> sin = ( x e. CC |-> ( sin ` x ) ) ) |
| 23 | 22 | oveq2d | |- ( ph -> ( CC _D sin ) = ( CC _D ( x e. CC |-> ( sin ` x ) ) ) ) |
| 24 | 8 | feqmptd | |- ( ph -> cos = ( x e. CC |-> ( cos ` x ) ) ) |
| 25 | 21 23 24 | 3eqtr3a | |- ( ph -> ( CC _D ( x e. CC |-> ( sin ` x ) ) ) = ( x e. CC |-> ( cos ` x ) ) ) |
| 26 | dvexp | |- ( N e. NN -> ( CC _D ( y e. CC |-> ( y ^ N ) ) ) = ( y e. CC |-> ( N x. ( y ^ ( N - 1 ) ) ) ) ) |
|
| 27 | 1 26 | syl | |- ( ph -> ( CC _D ( y e. CC |-> ( y ^ N ) ) ) = ( y e. CC |-> ( N x. ( y ^ ( N - 1 ) ) ) ) ) |
| 28 | oveq1 | |- ( y = ( sin ` x ) -> ( y ^ N ) = ( ( sin ` x ) ^ N ) ) |
|
| 29 | oveq1 | |- ( y = ( sin ` x ) -> ( y ^ ( N - 1 ) ) = ( ( sin ` x ) ^ ( N - 1 ) ) ) |
|
| 30 | 29 | oveq2d | |- ( y = ( sin ` x ) -> ( N x. ( y ^ ( N - 1 ) ) ) = ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) |
| 31 | 3 3 6 9 13 20 25 27 28 30 | dvmptco | |- ( ph -> ( CC _D ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ) = ( x e. CC |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) ) |