This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integral of an integrable function is a complex number. This is Metamath 100 proof #86. (Contributed by Mario Carneiro, 29-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgmpt.1 | |- ( ( ph /\ x e. A ) -> B e. V ) |
|
| itgcl.2 | |- ( ph -> ( x e. A |-> B ) e. L^1 ) |
||
| Assertion | itgcl | |- ( ph -> S. A B _d x e. CC ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgmpt.1 | |- ( ( ph /\ x e. A ) -> B e. V ) |
|
| 2 | itgcl.2 | |- ( ph -> ( x e. A |-> B ) e. L^1 ) |
|
| 3 | eqid | |- ( Re ` ( B / ( _i ^ k ) ) ) = ( Re ` ( B / ( _i ^ k ) ) ) |
|
| 4 | 3 | dfitg | |- S. A B _d x = sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) |
| 5 | fzfid | |- ( ph -> ( 0 ... 3 ) e. Fin ) |
|
| 6 | ax-icn | |- _i e. CC |
|
| 7 | elfznn0 | |- ( k e. ( 0 ... 3 ) -> k e. NN0 ) |
|
| 8 | 7 | adantl | |- ( ( ph /\ k e. ( 0 ... 3 ) ) -> k e. NN0 ) |
| 9 | expcl | |- ( ( _i e. CC /\ k e. NN0 ) -> ( _i ^ k ) e. CC ) |
|
| 10 | 6 8 9 | sylancr | |- ( ( ph /\ k e. ( 0 ... 3 ) ) -> ( _i ^ k ) e. CC ) |
| 11 | elfzelz | |- ( k e. ( 0 ... 3 ) -> k e. ZZ ) |
|
| 12 | eqidd | |- ( ph -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) = ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) |
|
| 13 | eqidd | |- ( ( ph /\ x e. A ) -> ( Re ` ( B / ( _i ^ k ) ) ) = ( Re ` ( B / ( _i ^ k ) ) ) ) |
|
| 14 | 12 13 2 1 | iblitg | |- ( ( ph /\ k e. ZZ ) -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) e. RR ) |
| 15 | 11 14 | sylan2 | |- ( ( ph /\ k e. ( 0 ... 3 ) ) -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) e. RR ) |
| 16 | 15 | recnd | |- ( ( ph /\ k e. ( 0 ... 3 ) ) -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) e. CC ) |
| 17 | 10 16 | mulcld | |- ( ( ph /\ k e. ( 0 ... 3 ) ) -> ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) e. CC ) |
| 18 | 5 17 | fsumcl | |- ( ph -> sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) e. CC ) |
| 19 | 4 18 | eqeltrid | |- ( ph -> S. A B _d x e. CC ) |