This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The negative of a continuous complex function is continuous. (Contributed by Paul Chapman, 21-Jan-2008) (Revised by Mario Carneiro, 25-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | negfcncf.1 | |- G = ( x e. A |-> -u ( F ` x ) ) |
|
| Assertion | negfcncf | |- ( F e. ( A -cn-> CC ) -> G e. ( A -cn-> CC ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negfcncf.1 | |- G = ( x e. A |-> -u ( F ` x ) ) |
|
| 2 | cncff | |- ( F e. ( A -cn-> CC ) -> F : A --> CC ) |
|
| 3 | 2 | ffvelcdmda | |- ( ( F e. ( A -cn-> CC ) /\ x e. A ) -> ( F ` x ) e. CC ) |
| 4 | 2 | feqmptd | |- ( F e. ( A -cn-> CC ) -> F = ( x e. A |-> ( F ` x ) ) ) |
| 5 | eqidd | |- ( F e. ( A -cn-> CC ) -> ( y e. CC |-> -u y ) = ( y e. CC |-> -u y ) ) |
|
| 6 | negeq | |- ( y = ( F ` x ) -> -u y = -u ( F ` x ) ) |
|
| 7 | 3 4 5 6 | fmptco | |- ( F e. ( A -cn-> CC ) -> ( ( y e. CC |-> -u y ) o. F ) = ( x e. A |-> -u ( F ` x ) ) ) |
| 8 | 7 1 | eqtr4di | |- ( F e. ( A -cn-> CC ) -> ( ( y e. CC |-> -u y ) o. F ) = G ) |
| 9 | id | |- ( F e. ( A -cn-> CC ) -> F e. ( A -cn-> CC ) ) |
|
| 10 | ssid | |- CC C_ CC |
|
| 11 | eqid | |- ( y e. CC |-> -u y ) = ( y e. CC |-> -u y ) |
|
| 12 | 11 | negcncf | |- ( CC C_ CC -> ( y e. CC |-> -u y ) e. ( CC -cn-> CC ) ) |
| 13 | 10 12 | mp1i | |- ( F e. ( A -cn-> CC ) -> ( y e. CC |-> -u y ) e. ( CC -cn-> CC ) ) |
| 14 | 9 13 | cncfco | |- ( F e. ( A -cn-> CC ) -> ( ( y e. CC |-> -u y ) o. F ) e. ( A -cn-> CC ) ) |
| 15 | 8 14 | eqeltrrd | |- ( F e. ( A -cn-> CC ) -> G e. ( A -cn-> CC ) ) |