This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Integration by parts. If B ( x ) is the derivative of A ( x ) and D ( x ) is the derivative of C ( x ) , and E = ( A x. B ) ( X ) and F = ( A x. B ) ( Y ) , then under suitable integrability and differentiability assumptions, the integral of A x. D from X to Y is equal to F - E minus the integral of B x. C . (Contributed by Mario Carneiro, 3-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgparts.x | |- ( ph -> X e. RR ) |
|
| itgparts.y | |- ( ph -> Y e. RR ) |
||
| itgparts.le | |- ( ph -> X <_ Y ) |
||
| itgparts.a | |- ( ph -> ( x e. ( X [,] Y ) |-> A ) e. ( ( X [,] Y ) -cn-> CC ) ) |
||
| itgparts.c | |- ( ph -> ( x e. ( X [,] Y ) |-> C ) e. ( ( X [,] Y ) -cn-> CC ) ) |
||
| itgparts.b | |- ( ph -> ( x e. ( X (,) Y ) |-> B ) e. ( ( X (,) Y ) -cn-> CC ) ) |
||
| itgparts.d | |- ( ph -> ( x e. ( X (,) Y ) |-> D ) e. ( ( X (,) Y ) -cn-> CC ) ) |
||
| itgparts.ad | |- ( ph -> ( x e. ( X (,) Y ) |-> ( A x. D ) ) e. L^1 ) |
||
| itgparts.bc | |- ( ph -> ( x e. ( X (,) Y ) |-> ( B x. C ) ) e. L^1 ) |
||
| itgparts.da | |- ( ph -> ( RR _D ( x e. ( X [,] Y ) |-> A ) ) = ( x e. ( X (,) Y ) |-> B ) ) |
||
| itgparts.dc | |- ( ph -> ( RR _D ( x e. ( X [,] Y ) |-> C ) ) = ( x e. ( X (,) Y ) |-> D ) ) |
||
| itgparts.e | |- ( ( ph /\ x = X ) -> ( A x. C ) = E ) |
||
| itgparts.f | |- ( ( ph /\ x = Y ) -> ( A x. C ) = F ) |
||
| Assertion | itgparts | |- ( ph -> S. ( X (,) Y ) ( A x. D ) _d x = ( ( F - E ) - S. ( X (,) Y ) ( B x. C ) _d x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgparts.x | |- ( ph -> X e. RR ) |
|
| 2 | itgparts.y | |- ( ph -> Y e. RR ) |
|
| 3 | itgparts.le | |- ( ph -> X <_ Y ) |
|
| 4 | itgparts.a | |- ( ph -> ( x e. ( X [,] Y ) |-> A ) e. ( ( X [,] Y ) -cn-> CC ) ) |
|
| 5 | itgparts.c | |- ( ph -> ( x e. ( X [,] Y ) |-> C ) e. ( ( X [,] Y ) -cn-> CC ) ) |
|
| 6 | itgparts.b | |- ( ph -> ( x e. ( X (,) Y ) |-> B ) e. ( ( X (,) Y ) -cn-> CC ) ) |
|
| 7 | itgparts.d | |- ( ph -> ( x e. ( X (,) Y ) |-> D ) e. ( ( X (,) Y ) -cn-> CC ) ) |
|
| 8 | itgparts.ad | |- ( ph -> ( x e. ( X (,) Y ) |-> ( A x. D ) ) e. L^1 ) |
|
| 9 | itgparts.bc | |- ( ph -> ( x e. ( X (,) Y ) |-> ( B x. C ) ) e. L^1 ) |
|
| 10 | itgparts.da | |- ( ph -> ( RR _D ( x e. ( X [,] Y ) |-> A ) ) = ( x e. ( X (,) Y ) |-> B ) ) |
|
| 11 | itgparts.dc | |- ( ph -> ( RR _D ( x e. ( X [,] Y ) |-> C ) ) = ( x e. ( X (,) Y ) |-> D ) ) |
|
| 12 | itgparts.e | |- ( ( ph /\ x = X ) -> ( A x. C ) = E ) |
|
| 13 | itgparts.f | |- ( ( ph /\ x = Y ) -> ( A x. C ) = F ) |
|
| 14 | cncff | |- ( ( x e. ( X (,) Y ) |-> B ) e. ( ( X (,) Y ) -cn-> CC ) -> ( x e. ( X (,) Y ) |-> B ) : ( X (,) Y ) --> CC ) |
|
| 15 | 6 14 | syl | |- ( ph -> ( x e. ( X (,) Y ) |-> B ) : ( X (,) Y ) --> CC ) |
| 16 | 15 | fvmptelcdm | |- ( ( ph /\ x e. ( X (,) Y ) ) -> B e. CC ) |
| 17 | ioossicc | |- ( X (,) Y ) C_ ( X [,] Y ) |
|
| 18 | 17 | sseli | |- ( x e. ( X (,) Y ) -> x e. ( X [,] Y ) ) |
| 19 | cncff | |- ( ( x e. ( X [,] Y ) |-> C ) e. ( ( X [,] Y ) -cn-> CC ) -> ( x e. ( X [,] Y ) |-> C ) : ( X [,] Y ) --> CC ) |
|
| 20 | 5 19 | syl | |- ( ph -> ( x e. ( X [,] Y ) |-> C ) : ( X [,] Y ) --> CC ) |
| 21 | 20 | fvmptelcdm | |- ( ( ph /\ x e. ( X [,] Y ) ) -> C e. CC ) |
| 22 | 18 21 | sylan2 | |- ( ( ph /\ x e. ( X (,) Y ) ) -> C e. CC ) |
| 23 | 16 22 | mulcld | |- ( ( ph /\ x e. ( X (,) Y ) ) -> ( B x. C ) e. CC ) |
| 24 | 23 9 | itgcl | |- ( ph -> S. ( X (,) Y ) ( B x. C ) _d x e. CC ) |
| 25 | cncff | |- ( ( x e. ( X [,] Y ) |-> A ) e. ( ( X [,] Y ) -cn-> CC ) -> ( x e. ( X [,] Y ) |-> A ) : ( X [,] Y ) --> CC ) |
|
| 26 | 4 25 | syl | |- ( ph -> ( x e. ( X [,] Y ) |-> A ) : ( X [,] Y ) --> CC ) |
| 27 | 26 | fvmptelcdm | |- ( ( ph /\ x e. ( X [,] Y ) ) -> A e. CC ) |
| 28 | 18 27 | sylan2 | |- ( ( ph /\ x e. ( X (,) Y ) ) -> A e. CC ) |
| 29 | cncff | |- ( ( x e. ( X (,) Y ) |-> D ) e. ( ( X (,) Y ) -cn-> CC ) -> ( x e. ( X (,) Y ) |-> D ) : ( X (,) Y ) --> CC ) |
|
| 30 | 7 29 | syl | |- ( ph -> ( x e. ( X (,) Y ) |-> D ) : ( X (,) Y ) --> CC ) |
| 31 | 30 | fvmptelcdm | |- ( ( ph /\ x e. ( X (,) Y ) ) -> D e. CC ) |
| 32 | 28 31 | mulcld | |- ( ( ph /\ x e. ( X (,) Y ) ) -> ( A x. D ) e. CC ) |
| 33 | 32 8 | itgcl | |- ( ph -> S. ( X (,) Y ) ( A x. D ) _d x e. CC ) |
| 34 | 24 33 | pncan2d | |- ( ph -> ( ( S. ( X (,) Y ) ( B x. C ) _d x + S. ( X (,) Y ) ( A x. D ) _d x ) - S. ( X (,) Y ) ( B x. C ) _d x ) = S. ( X (,) Y ) ( A x. D ) _d x ) |
| 35 | 23 9 32 8 | itgadd | |- ( ph -> S. ( X (,) Y ) ( ( B x. C ) + ( A x. D ) ) _d x = ( S. ( X (,) Y ) ( B x. C ) _d x + S. ( X (,) Y ) ( A x. D ) _d x ) ) |
| 36 | fveq2 | |- ( x = t -> ( ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) ` x ) = ( ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) ` t ) ) |
|
| 37 | nfcv | |- F/_ t ( ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) ` x ) |
|
| 38 | nfcv | |- F/_ x RR |
|
| 39 | nfcv | |- F/_ x _D |
|
| 40 | nfmpt1 | |- F/_ x ( x e. ( X [,] Y ) |-> ( A x. C ) ) |
|
| 41 | 38 39 40 | nfov | |- F/_ x ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) |
| 42 | nfcv | |- F/_ x t |
|
| 43 | 41 42 | nffv | |- F/_ x ( ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) ` t ) |
| 44 | 36 37 43 | cbvitg | |- S. ( X (,) Y ) ( ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) ` x ) _d x = S. ( X (,) Y ) ( ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) ` t ) _d t |
| 45 | ax-resscn | |- RR C_ CC |
|
| 46 | 45 | a1i | |- ( ph -> RR C_ CC ) |
| 47 | iccssre | |- ( ( X e. RR /\ Y e. RR ) -> ( X [,] Y ) C_ RR ) |
|
| 48 | 1 2 47 | syl2anc | |- ( ph -> ( X [,] Y ) C_ RR ) |
| 49 | 27 21 | mulcld | |- ( ( ph /\ x e. ( X [,] Y ) ) -> ( A x. C ) e. CC ) |
| 50 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 51 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 52 | iccntr | |- ( ( X e. RR /\ Y e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( X [,] Y ) ) = ( X (,) Y ) ) |
|
| 53 | 1 2 52 | syl2anc | |- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( X [,] Y ) ) = ( X (,) Y ) ) |
| 54 | 46 48 49 50 51 53 | dvmptntr | |- ( ph -> ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) = ( RR _D ( x e. ( X (,) Y ) |-> ( A x. C ) ) ) ) |
| 55 | reelprrecn | |- RR e. { RR , CC } |
|
| 56 | 55 | a1i | |- ( ph -> RR e. { RR , CC } ) |
| 57 | 46 48 27 50 51 53 | dvmptntr | |- ( ph -> ( RR _D ( x e. ( X [,] Y ) |-> A ) ) = ( RR _D ( x e. ( X (,) Y ) |-> A ) ) ) |
| 58 | 57 10 | eqtr3d | |- ( ph -> ( RR _D ( x e. ( X (,) Y ) |-> A ) ) = ( x e. ( X (,) Y ) |-> B ) ) |
| 59 | 46 48 21 50 51 53 | dvmptntr | |- ( ph -> ( RR _D ( x e. ( X [,] Y ) |-> C ) ) = ( RR _D ( x e. ( X (,) Y ) |-> C ) ) ) |
| 60 | 59 11 | eqtr3d | |- ( ph -> ( RR _D ( x e. ( X (,) Y ) |-> C ) ) = ( x e. ( X (,) Y ) |-> D ) ) |
| 61 | 56 28 16 58 22 31 60 | dvmptmul | |- ( ph -> ( RR _D ( x e. ( X (,) Y ) |-> ( A x. C ) ) ) = ( x e. ( X (,) Y ) |-> ( ( B x. C ) + ( D x. A ) ) ) ) |
| 62 | 31 28 | mulcomd | |- ( ( ph /\ x e. ( X (,) Y ) ) -> ( D x. A ) = ( A x. D ) ) |
| 63 | 62 | oveq2d | |- ( ( ph /\ x e. ( X (,) Y ) ) -> ( ( B x. C ) + ( D x. A ) ) = ( ( B x. C ) + ( A x. D ) ) ) |
| 64 | 63 | mpteq2dva | |- ( ph -> ( x e. ( X (,) Y ) |-> ( ( B x. C ) + ( D x. A ) ) ) = ( x e. ( X (,) Y ) |-> ( ( B x. C ) + ( A x. D ) ) ) ) |
| 65 | 54 61 64 | 3eqtrd | |- ( ph -> ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) = ( x e. ( X (,) Y ) |-> ( ( B x. C ) + ( A x. D ) ) ) ) |
| 66 | 51 | addcn | |- + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 67 | 66 | a1i | |- ( ph -> + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 68 | resmpt | |- ( ( X (,) Y ) C_ ( X [,] Y ) -> ( ( x e. ( X [,] Y ) |-> C ) |` ( X (,) Y ) ) = ( x e. ( X (,) Y ) |-> C ) ) |
|
| 69 | 17 68 | ax-mp | |- ( ( x e. ( X [,] Y ) |-> C ) |` ( X (,) Y ) ) = ( x e. ( X (,) Y ) |-> C ) |
| 70 | rescncf | |- ( ( X (,) Y ) C_ ( X [,] Y ) -> ( ( x e. ( X [,] Y ) |-> C ) e. ( ( X [,] Y ) -cn-> CC ) -> ( ( x e. ( X [,] Y ) |-> C ) |` ( X (,) Y ) ) e. ( ( X (,) Y ) -cn-> CC ) ) ) |
|
| 71 | 17 5 70 | mpsyl | |- ( ph -> ( ( x e. ( X [,] Y ) |-> C ) |` ( X (,) Y ) ) e. ( ( X (,) Y ) -cn-> CC ) ) |
| 72 | 69 71 | eqeltrrid | |- ( ph -> ( x e. ( X (,) Y ) |-> C ) e. ( ( X (,) Y ) -cn-> CC ) ) |
| 73 | 6 72 | mulcncf | |- ( ph -> ( x e. ( X (,) Y ) |-> ( B x. C ) ) e. ( ( X (,) Y ) -cn-> CC ) ) |
| 74 | resmpt | |- ( ( X (,) Y ) C_ ( X [,] Y ) -> ( ( x e. ( X [,] Y ) |-> A ) |` ( X (,) Y ) ) = ( x e. ( X (,) Y ) |-> A ) ) |
|
| 75 | 17 74 | ax-mp | |- ( ( x e. ( X [,] Y ) |-> A ) |` ( X (,) Y ) ) = ( x e. ( X (,) Y ) |-> A ) |
| 76 | rescncf | |- ( ( X (,) Y ) C_ ( X [,] Y ) -> ( ( x e. ( X [,] Y ) |-> A ) e. ( ( X [,] Y ) -cn-> CC ) -> ( ( x e. ( X [,] Y ) |-> A ) |` ( X (,) Y ) ) e. ( ( X (,) Y ) -cn-> CC ) ) ) |
|
| 77 | 17 4 76 | mpsyl | |- ( ph -> ( ( x e. ( X [,] Y ) |-> A ) |` ( X (,) Y ) ) e. ( ( X (,) Y ) -cn-> CC ) ) |
| 78 | 75 77 | eqeltrrid | |- ( ph -> ( x e. ( X (,) Y ) |-> A ) e. ( ( X (,) Y ) -cn-> CC ) ) |
| 79 | 78 7 | mulcncf | |- ( ph -> ( x e. ( X (,) Y ) |-> ( A x. D ) ) e. ( ( X (,) Y ) -cn-> CC ) ) |
| 80 | 51 67 73 79 | cncfmpt2f | |- ( ph -> ( x e. ( X (,) Y ) |-> ( ( B x. C ) + ( A x. D ) ) ) e. ( ( X (,) Y ) -cn-> CC ) ) |
| 81 | 65 80 | eqeltrd | |- ( ph -> ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) e. ( ( X (,) Y ) -cn-> CC ) ) |
| 82 | 23 9 32 8 | ibladd | |- ( ph -> ( x e. ( X (,) Y ) |-> ( ( B x. C ) + ( A x. D ) ) ) e. L^1 ) |
| 83 | 65 82 | eqeltrd | |- ( ph -> ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) e. L^1 ) |
| 84 | 4 5 | mulcncf | |- ( ph -> ( x e. ( X [,] Y ) |-> ( A x. C ) ) e. ( ( X [,] Y ) -cn-> CC ) ) |
| 85 | 1 2 3 81 83 84 | ftc2 | |- ( ph -> S. ( X (,) Y ) ( ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) ` t ) _d t = ( ( ( x e. ( X [,] Y ) |-> ( A x. C ) ) ` Y ) - ( ( x e. ( X [,] Y ) |-> ( A x. C ) ) ` X ) ) ) |
| 86 | 44 85 | eqtrid | |- ( ph -> S. ( X (,) Y ) ( ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) ` x ) _d x = ( ( ( x e. ( X [,] Y ) |-> ( A x. C ) ) ` Y ) - ( ( x e. ( X [,] Y ) |-> ( A x. C ) ) ` X ) ) ) |
| 87 | 65 | fveq1d | |- ( ph -> ( ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) ` x ) = ( ( x e. ( X (,) Y ) |-> ( ( B x. C ) + ( A x. D ) ) ) ` x ) ) |
| 88 | 87 | adantr | |- ( ( ph /\ x e. ( X (,) Y ) ) -> ( ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) ` x ) = ( ( x e. ( X (,) Y ) |-> ( ( B x. C ) + ( A x. D ) ) ) ` x ) ) |
| 89 | simpr | |- ( ( ph /\ x e. ( X (,) Y ) ) -> x e. ( X (,) Y ) ) |
|
| 90 | ovex | |- ( ( B x. C ) + ( A x. D ) ) e. _V |
|
| 91 | eqid | |- ( x e. ( X (,) Y ) |-> ( ( B x. C ) + ( A x. D ) ) ) = ( x e. ( X (,) Y ) |-> ( ( B x. C ) + ( A x. D ) ) ) |
|
| 92 | 91 | fvmpt2 | |- ( ( x e. ( X (,) Y ) /\ ( ( B x. C ) + ( A x. D ) ) e. _V ) -> ( ( x e. ( X (,) Y ) |-> ( ( B x. C ) + ( A x. D ) ) ) ` x ) = ( ( B x. C ) + ( A x. D ) ) ) |
| 93 | 89 90 92 | sylancl | |- ( ( ph /\ x e. ( X (,) Y ) ) -> ( ( x e. ( X (,) Y ) |-> ( ( B x. C ) + ( A x. D ) ) ) ` x ) = ( ( B x. C ) + ( A x. D ) ) ) |
| 94 | 88 93 | eqtrd | |- ( ( ph /\ x e. ( X (,) Y ) ) -> ( ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) ` x ) = ( ( B x. C ) + ( A x. D ) ) ) |
| 95 | 94 | itgeq2dv | |- ( ph -> S. ( X (,) Y ) ( ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) ` x ) _d x = S. ( X (,) Y ) ( ( B x. C ) + ( A x. D ) ) _d x ) |
| 96 | 1 | rexrd | |- ( ph -> X e. RR* ) |
| 97 | 2 | rexrd | |- ( ph -> Y e. RR* ) |
| 98 | ubicc2 | |- ( ( X e. RR* /\ Y e. RR* /\ X <_ Y ) -> Y e. ( X [,] Y ) ) |
|
| 99 | 96 97 3 98 | syl3anc | |- ( ph -> Y e. ( X [,] Y ) ) |
| 100 | ovex | |- ( A x. C ) e. _V |
|
| 101 | 100 | csbex | |- [_ Y / x ]_ ( A x. C ) e. _V |
| 102 | eqid | |- ( x e. ( X [,] Y ) |-> ( A x. C ) ) = ( x e. ( X [,] Y ) |-> ( A x. C ) ) |
|
| 103 | 102 | fvmpts | |- ( ( Y e. ( X [,] Y ) /\ [_ Y / x ]_ ( A x. C ) e. _V ) -> ( ( x e. ( X [,] Y ) |-> ( A x. C ) ) ` Y ) = [_ Y / x ]_ ( A x. C ) ) |
| 104 | 99 101 103 | sylancl | |- ( ph -> ( ( x e. ( X [,] Y ) |-> ( A x. C ) ) ` Y ) = [_ Y / x ]_ ( A x. C ) ) |
| 105 | 2 13 | csbied | |- ( ph -> [_ Y / x ]_ ( A x. C ) = F ) |
| 106 | 104 105 | eqtrd | |- ( ph -> ( ( x e. ( X [,] Y ) |-> ( A x. C ) ) ` Y ) = F ) |
| 107 | lbicc2 | |- ( ( X e. RR* /\ Y e. RR* /\ X <_ Y ) -> X e. ( X [,] Y ) ) |
|
| 108 | 96 97 3 107 | syl3anc | |- ( ph -> X e. ( X [,] Y ) ) |
| 109 | 100 | csbex | |- [_ X / x ]_ ( A x. C ) e. _V |
| 110 | 102 | fvmpts | |- ( ( X e. ( X [,] Y ) /\ [_ X / x ]_ ( A x. C ) e. _V ) -> ( ( x e. ( X [,] Y ) |-> ( A x. C ) ) ` X ) = [_ X / x ]_ ( A x. C ) ) |
| 111 | 108 109 110 | sylancl | |- ( ph -> ( ( x e. ( X [,] Y ) |-> ( A x. C ) ) ` X ) = [_ X / x ]_ ( A x. C ) ) |
| 112 | 1 12 | csbied | |- ( ph -> [_ X / x ]_ ( A x. C ) = E ) |
| 113 | 111 112 | eqtrd | |- ( ph -> ( ( x e. ( X [,] Y ) |-> ( A x. C ) ) ` X ) = E ) |
| 114 | 106 113 | oveq12d | |- ( ph -> ( ( ( x e. ( X [,] Y ) |-> ( A x. C ) ) ` Y ) - ( ( x e. ( X [,] Y ) |-> ( A x. C ) ) ` X ) ) = ( F - E ) ) |
| 115 | 86 95 114 | 3eqtr3d | |- ( ph -> S. ( X (,) Y ) ( ( B x. C ) + ( A x. D ) ) _d x = ( F - E ) ) |
| 116 | 35 115 | eqtr3d | |- ( ph -> ( S. ( X (,) Y ) ( B x. C ) _d x + S. ( X (,) Y ) ( A x. D ) _d x ) = ( F - E ) ) |
| 117 | 116 | oveq1d | |- ( ph -> ( ( S. ( X (,) Y ) ( B x. C ) _d x + S. ( X (,) Y ) ( A x. D ) _d x ) - S. ( X (,) Y ) ( B x. C ) _d x ) = ( ( F - E ) - S. ( X (,) Y ) ( B x. C ) _d x ) ) |
| 118 | 34 117 | eqtr3d | |- ( ph -> S. ( X (,) Y ) ( A x. D ) _d x = ( ( F - E ) - S. ( X (,) Y ) ( B x. C ) _d x ) ) |