This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A continuous function on a closed bounded interval is integrable. (Contributed by Mario Carneiro, 12-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cniccibl | |- ( ( A e. RR /\ B e. RR /\ F e. ( ( A [,] B ) -cn-> CC ) ) -> F e. L^1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccmbl | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) e. dom vol ) |
|
| 2 | cnmbf | |- ( ( ( A [,] B ) e. dom vol /\ F e. ( ( A [,] B ) -cn-> CC ) ) -> F e. MblFn ) |
|
| 3 | 1 2 | stoic3 | |- ( ( A e. RR /\ B e. RR /\ F e. ( ( A [,] B ) -cn-> CC ) ) -> F e. MblFn ) |
| 4 | simp3 | |- ( ( A e. RR /\ B e. RR /\ F e. ( ( A [,] B ) -cn-> CC ) ) -> F e. ( ( A [,] B ) -cn-> CC ) ) |
|
| 5 | cncff | |- ( F e. ( ( A [,] B ) -cn-> CC ) -> F : ( A [,] B ) --> CC ) |
|
| 6 | fdm | |- ( F : ( A [,] B ) --> CC -> dom F = ( A [,] B ) ) |
|
| 7 | 4 5 6 | 3syl | |- ( ( A e. RR /\ B e. RR /\ F e. ( ( A [,] B ) -cn-> CC ) ) -> dom F = ( A [,] B ) ) |
| 8 | 7 | fveq2d | |- ( ( A e. RR /\ B e. RR /\ F e. ( ( A [,] B ) -cn-> CC ) ) -> ( vol ` dom F ) = ( vol ` ( A [,] B ) ) ) |
| 9 | iccvolcl | |- ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,] B ) ) e. RR ) |
|
| 10 | 9 | 3adant3 | |- ( ( A e. RR /\ B e. RR /\ F e. ( ( A [,] B ) -cn-> CC ) ) -> ( vol ` ( A [,] B ) ) e. RR ) |
| 11 | 8 10 | eqeltrd | |- ( ( A e. RR /\ B e. RR /\ F e. ( ( A [,] B ) -cn-> CC ) ) -> ( vol ` dom F ) e. RR ) |
| 12 | cniccbdd | |- ( ( A e. RR /\ B e. RR /\ F e. ( ( A [,] B ) -cn-> CC ) ) -> E. x e. RR A. y e. ( A [,] B ) ( abs ` ( F ` y ) ) <_ x ) |
|
| 13 | 7 | raleqdv | |- ( ( A e. RR /\ B e. RR /\ F e. ( ( A [,] B ) -cn-> CC ) ) -> ( A. y e. dom F ( abs ` ( F ` y ) ) <_ x <-> A. y e. ( A [,] B ) ( abs ` ( F ` y ) ) <_ x ) ) |
| 14 | 13 | rexbidv | |- ( ( A e. RR /\ B e. RR /\ F e. ( ( A [,] B ) -cn-> CC ) ) -> ( E. x e. RR A. y e. dom F ( abs ` ( F ` y ) ) <_ x <-> E. x e. RR A. y e. ( A [,] B ) ( abs ` ( F ` y ) ) <_ x ) ) |
| 15 | 12 14 | mpbird | |- ( ( A e. RR /\ B e. RR /\ F e. ( ( A [,] B ) -cn-> CC ) ) -> E. x e. RR A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) |
| 16 | bddibl | |- ( ( F e. MblFn /\ ( vol ` dom F ) e. RR /\ E. x e. RR A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) -> F e. L^1 ) |
|
| 17 | 3 11 15 16 | syl3anc | |- ( ( A e. RR /\ B e. RR /\ F e. ( ( A [,] B ) -cn-> CC ) ) -> F e. L^1 ) |