This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A continuous complex function restricted to a subset is continuous, using maps-to notation. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cncfmptss.1 | |- F/_ x F |
|
| cncfmptss.2 | |- ( ph -> F e. ( A -cn-> B ) ) |
||
| cncfmptss.3 | |- ( ph -> C C_ A ) |
||
| Assertion | cncfmptss | |- ( ph -> ( x e. C |-> ( F ` x ) ) e. ( C -cn-> B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfmptss.1 | |- F/_ x F |
|
| 2 | cncfmptss.2 | |- ( ph -> F e. ( A -cn-> B ) ) |
|
| 3 | cncfmptss.3 | |- ( ph -> C C_ A ) |
|
| 4 | 3 | resmptd | |- ( ph -> ( ( y e. A |-> ( F ` y ) ) |` C ) = ( y e. C |-> ( F ` y ) ) ) |
| 5 | cncff | |- ( F e. ( A -cn-> B ) -> F : A --> B ) |
|
| 6 | 2 5 | syl | |- ( ph -> F : A --> B ) |
| 7 | 6 | feqmptd | |- ( ph -> F = ( y e. A |-> ( F ` y ) ) ) |
| 8 | 7 | reseq1d | |- ( ph -> ( F |` C ) = ( ( y e. A |-> ( F ` y ) ) |` C ) ) |
| 9 | nfcv | |- F/_ y F |
|
| 10 | nfcv | |- F/_ y x |
|
| 11 | 9 10 | nffv | |- F/_ y ( F ` x ) |
| 12 | nfcv | |- F/_ x y |
|
| 13 | 1 12 | nffv | |- F/_ x ( F ` y ) |
| 14 | fveq2 | |- ( x = y -> ( F ` x ) = ( F ` y ) ) |
|
| 15 | 11 13 14 | cbvmpt | |- ( x e. C |-> ( F ` x ) ) = ( y e. C |-> ( F ` y ) ) |
| 16 | 15 | a1i | |- ( ph -> ( x e. C |-> ( F ` x ) ) = ( y e. C |-> ( F ` y ) ) ) |
| 17 | 4 8 16 | 3eqtr4rd | |- ( ph -> ( x e. C |-> ( F ` x ) ) = ( F |` C ) ) |
| 18 | rescncf | |- ( C C_ A -> ( F e. ( A -cn-> B ) -> ( F |` C ) e. ( C -cn-> B ) ) ) |
|
| 19 | 3 2 18 | sylc | |- ( ph -> ( F |` C ) e. ( C -cn-> B ) ) |
| 20 | 17 19 | eqeltrd | |- ( ph -> ( x e. C |-> ( F ` x ) ) e. ( C -cn-> B ) ) |