This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cosine is continuous. (Contributed by Paul Chapman, 28-Nov-2007) (Revised by Mario Carneiro, 3-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coscn | |- cos e. ( CC -cn-> CC ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cos | |- cos = ( x e. CC |-> ( ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) / 2 ) ) |
|
| 2 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 3 | 2 | addcn | |- + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 4 | 3 | a1i | |- ( T. -> + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 5 | efcn | |- exp e. ( CC -cn-> CC ) |
|
| 6 | 5 | a1i | |- ( T. -> exp e. ( CC -cn-> CC ) ) |
| 7 | ax-icn | |- _i e. CC |
|
| 8 | eqid | |- ( x e. CC |-> ( _i x. x ) ) = ( x e. CC |-> ( _i x. x ) ) |
|
| 9 | 8 | mulc1cncf | |- ( _i e. CC -> ( x e. CC |-> ( _i x. x ) ) e. ( CC -cn-> CC ) ) |
| 10 | 7 9 | mp1i | |- ( T. -> ( x e. CC |-> ( _i x. x ) ) e. ( CC -cn-> CC ) ) |
| 11 | 6 10 | cncfmpt1f | |- ( T. -> ( x e. CC |-> ( exp ` ( _i x. x ) ) ) e. ( CC -cn-> CC ) ) |
| 12 | negicn | |- -u _i e. CC |
|
| 13 | eqid | |- ( x e. CC |-> ( -u _i x. x ) ) = ( x e. CC |-> ( -u _i x. x ) ) |
|
| 14 | 13 | mulc1cncf | |- ( -u _i e. CC -> ( x e. CC |-> ( -u _i x. x ) ) e. ( CC -cn-> CC ) ) |
| 15 | 12 14 | mp1i | |- ( T. -> ( x e. CC |-> ( -u _i x. x ) ) e. ( CC -cn-> CC ) ) |
| 16 | 6 15 | cncfmpt1f | |- ( T. -> ( x e. CC |-> ( exp ` ( -u _i x. x ) ) ) e. ( CC -cn-> CC ) ) |
| 17 | 2 4 11 16 | cncfmpt2f | |- ( T. -> ( x e. CC |-> ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) ) e. ( CC -cn-> CC ) ) |
| 18 | cncff | |- ( ( x e. CC |-> ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) ) e. ( CC -cn-> CC ) -> ( x e. CC |-> ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) ) : CC --> CC ) |
|
| 19 | 17 18 | syl | |- ( T. -> ( x e. CC |-> ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) ) : CC --> CC ) |
| 20 | eqid | |- ( x e. CC |-> ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) ) = ( x e. CC |-> ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) ) |
|
| 21 | 20 | fmpt | |- ( A. x e. CC ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) e. CC <-> ( x e. CC |-> ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) ) : CC --> CC ) |
| 22 | 19 21 | sylibr | |- ( T. -> A. x e. CC ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) e. CC ) |
| 23 | eqidd | |- ( T. -> ( x e. CC |-> ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) ) = ( x e. CC |-> ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) ) ) |
|
| 24 | eqidd | |- ( T. -> ( y e. CC |-> ( y / 2 ) ) = ( y e. CC |-> ( y / 2 ) ) ) |
|
| 25 | oveq1 | |- ( y = ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) -> ( y / 2 ) = ( ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) / 2 ) ) |
|
| 26 | 22 23 24 25 | fmptcof | |- ( T. -> ( ( y e. CC |-> ( y / 2 ) ) o. ( x e. CC |-> ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) ) ) = ( x e. CC |-> ( ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) / 2 ) ) ) |
| 27 | 2cn | |- 2 e. CC |
|
| 28 | 2ne0 | |- 2 =/= 0 |
|
| 29 | eqid | |- ( y e. CC |-> ( y / 2 ) ) = ( y e. CC |-> ( y / 2 ) ) |
|
| 30 | 29 | divccncf | |- ( ( 2 e. CC /\ 2 =/= 0 ) -> ( y e. CC |-> ( y / 2 ) ) e. ( CC -cn-> CC ) ) |
| 31 | 27 28 30 | mp2an | |- ( y e. CC |-> ( y / 2 ) ) e. ( CC -cn-> CC ) |
| 32 | 31 | a1i | |- ( T. -> ( y e. CC |-> ( y / 2 ) ) e. ( CC -cn-> CC ) ) |
| 33 | 17 32 | cncfco | |- ( T. -> ( ( y e. CC |-> ( y / 2 ) ) o. ( x e. CC |-> ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) ) ) e. ( CC -cn-> CC ) ) |
| 34 | 26 33 | eqeltrrd | |- ( T. -> ( x e. CC |-> ( ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) / 2 ) ) e. ( CC -cn-> CC ) ) |
| 35 | 34 | mptru | |- ( x e. CC |-> ( ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) / 2 ) ) e. ( CC -cn-> CC ) |
| 36 | 1 35 | eqeltri | |- cos e. ( CC -cn-> CC ) |