This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F is a complex continuous function and N is a fixed number, then F^N is continuous too. A generalization of expcncf . (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | expcnfg.1 | |- F/_ x F |
|
| expcnfg.2 | |- ( ph -> F e. ( A -cn-> CC ) ) |
||
| expcnfg.3 | |- ( ph -> N e. NN0 ) |
||
| Assertion | expcnfg | |- ( ph -> ( x e. A |-> ( ( F ` x ) ^ N ) ) e. ( A -cn-> CC ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcnfg.1 | |- F/_ x F |
|
| 2 | expcnfg.2 | |- ( ph -> F e. ( A -cn-> CC ) ) |
|
| 3 | expcnfg.3 | |- ( ph -> N e. NN0 ) |
|
| 4 | nfcv | |- F/_ t ( ( F ` x ) ^ N ) |
|
| 5 | nfcv | |- F/_ x t |
|
| 6 | 1 5 | nffv | |- F/_ x ( F ` t ) |
| 7 | nfcv | |- F/_ x ^ |
|
| 8 | nfcv | |- F/_ x N |
|
| 9 | 6 7 8 | nfov | |- F/_ x ( ( F ` t ) ^ N ) |
| 10 | fveq2 | |- ( x = t -> ( F ` x ) = ( F ` t ) ) |
|
| 11 | 10 | oveq1d | |- ( x = t -> ( ( F ` x ) ^ N ) = ( ( F ` t ) ^ N ) ) |
| 12 | 4 9 11 | cbvmpt | |- ( x e. A |-> ( ( F ` x ) ^ N ) ) = ( t e. A |-> ( ( F ` t ) ^ N ) ) |
| 13 | cncff | |- ( F e. ( A -cn-> CC ) -> F : A --> CC ) |
|
| 14 | 2 13 | syl | |- ( ph -> F : A --> CC ) |
| 15 | 14 | ffvelcdmda | |- ( ( ph /\ t e. A ) -> ( F ` t ) e. CC ) |
| 16 | 3 | adantr | |- ( ( ph /\ t e. A ) -> N e. NN0 ) |
| 17 | 15 16 | expcld | |- ( ( ph /\ t e. A ) -> ( ( F ` t ) ^ N ) e. CC ) |
| 18 | oveq1 | |- ( x = ( F ` t ) -> ( x ^ N ) = ( ( F ` t ) ^ N ) ) |
|
| 19 | eqid | |- ( x e. CC |-> ( x ^ N ) ) = ( x e. CC |-> ( x ^ N ) ) |
|
| 20 | 6 9 18 19 | fvmptf | |- ( ( ( F ` t ) e. CC /\ ( ( F ` t ) ^ N ) e. CC ) -> ( ( x e. CC |-> ( x ^ N ) ) ` ( F ` t ) ) = ( ( F ` t ) ^ N ) ) |
| 21 | 15 17 20 | syl2anc | |- ( ( ph /\ t e. A ) -> ( ( x e. CC |-> ( x ^ N ) ) ` ( F ` t ) ) = ( ( F ` t ) ^ N ) ) |
| 22 | 21 | eqcomd | |- ( ( ph /\ t e. A ) -> ( ( F ` t ) ^ N ) = ( ( x e. CC |-> ( x ^ N ) ) ` ( F ` t ) ) ) |
| 23 | 22 | mpteq2dva | |- ( ph -> ( t e. A |-> ( ( F ` t ) ^ N ) ) = ( t e. A |-> ( ( x e. CC |-> ( x ^ N ) ) ` ( F ` t ) ) ) ) |
| 24 | 12 23 | eqtrid | |- ( ph -> ( x e. A |-> ( ( F ` x ) ^ N ) ) = ( t e. A |-> ( ( x e. CC |-> ( x ^ N ) ) ` ( F ` t ) ) ) ) |
| 25 | simpr | |- ( ( ph /\ x e. CC ) -> x e. CC ) |
|
| 26 | 3 | adantr | |- ( ( ph /\ x e. CC ) -> N e. NN0 ) |
| 27 | 25 26 | expcld | |- ( ( ph /\ x e. CC ) -> ( x ^ N ) e. CC ) |
| 28 | 27 | fmpttd | |- ( ph -> ( x e. CC |-> ( x ^ N ) ) : CC --> CC ) |
| 29 | fcompt | |- ( ( ( x e. CC |-> ( x ^ N ) ) : CC --> CC /\ F : A --> CC ) -> ( ( x e. CC |-> ( x ^ N ) ) o. F ) = ( t e. A |-> ( ( x e. CC |-> ( x ^ N ) ) ` ( F ` t ) ) ) ) |
|
| 30 | 28 14 29 | syl2anc | |- ( ph -> ( ( x e. CC |-> ( x ^ N ) ) o. F ) = ( t e. A |-> ( ( x e. CC |-> ( x ^ N ) ) ` ( F ` t ) ) ) ) |
| 31 | 24 30 | eqtr4d | |- ( ph -> ( x e. A |-> ( ( F ` x ) ^ N ) ) = ( ( x e. CC |-> ( x ^ N ) ) o. F ) ) |
| 32 | expcncf | |- ( N e. NN0 -> ( x e. CC |-> ( x ^ N ) ) e. ( CC -cn-> CC ) ) |
|
| 33 | 3 32 | syl | |- ( ph -> ( x e. CC |-> ( x ^ N ) ) e. ( CC -cn-> CC ) ) |
| 34 | 2 33 | cncfco | |- ( ph -> ( ( x e. CC |-> ( x ^ N ) ) o. F ) e. ( A -cn-> CC ) ) |
| 35 | 31 34 | eqeltrd | |- ( ph -> ( x e. A |-> ( ( F ` x ) ^ N ) ) e. ( A -cn-> CC ) ) |