This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A continuous complex function restricted to a subset is continuous, using maps-to notation. This theorem generalizes cncfmptss because it allows to establish a subset for the codomain also. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cncfmptssg.2 | |- F = ( x e. A |-> E ) |
|
| cncfmptssg.3 | |- ( ph -> F e. ( A -cn-> B ) ) |
||
| cncfmptssg.4 | |- ( ph -> C C_ A ) |
||
| cncfmptssg.5 | |- ( ph -> D C_ B ) |
||
| cncfmptssg.6 | |- ( ( ph /\ x e. C ) -> E e. D ) |
||
| Assertion | cncfmptssg | |- ( ph -> ( x e. C |-> E ) e. ( C -cn-> D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfmptssg.2 | |- F = ( x e. A |-> E ) |
|
| 2 | cncfmptssg.3 | |- ( ph -> F e. ( A -cn-> B ) ) |
|
| 3 | cncfmptssg.4 | |- ( ph -> C C_ A ) |
|
| 4 | cncfmptssg.5 | |- ( ph -> D C_ B ) |
|
| 5 | cncfmptssg.6 | |- ( ( ph /\ x e. C ) -> E e. D ) |
|
| 6 | 5 | fmpttd | |- ( ph -> ( x e. C |-> E ) : C --> D ) |
| 7 | cncfrss2 | |- ( F e. ( A -cn-> B ) -> B C_ CC ) |
|
| 8 | 2 7 | syl | |- ( ph -> B C_ CC ) |
| 9 | 4 8 | sstrd | |- ( ph -> D C_ CC ) |
| 10 | 3 | sselda | |- ( ( ph /\ x e. C ) -> x e. A ) |
| 11 | 1 | fvmpt2 | |- ( ( x e. A /\ E e. D ) -> ( F ` x ) = E ) |
| 12 | 10 5 11 | syl2anc | |- ( ( ph /\ x e. C ) -> ( F ` x ) = E ) |
| 13 | 12 | mpteq2dva | |- ( ph -> ( x e. C |-> ( F ` x ) ) = ( x e. C |-> E ) ) |
| 14 | nfmpt1 | |- F/_ x ( x e. A |-> E ) |
|
| 15 | 1 14 | nfcxfr | |- F/_ x F |
| 16 | 15 2 3 | cncfmptss | |- ( ph -> ( x e. C |-> ( F ` x ) ) e. ( C -cn-> B ) ) |
| 17 | 13 16 | eqeltrrd | |- ( ph -> ( x e. C |-> E ) e. ( C -cn-> B ) ) |
| 18 | cncfcdm | |- ( ( D C_ CC /\ ( x e. C |-> E ) e. ( C -cn-> B ) ) -> ( ( x e. C |-> E ) e. ( C -cn-> D ) <-> ( x e. C |-> E ) : C --> D ) ) |
|
| 19 | 9 17 18 | syl2anc | |- ( ph -> ( ( x e. C |-> E ) e. ( C -cn-> D ) <-> ( x e. C |-> E ) : C --> D ) ) |
| 20 | 6 19 | mpbird | |- ( ph -> ( x e. C |-> E ) e. ( C -cn-> D ) ) |