This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The real derivative of the cosine. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvcosre | |- ( RR _D ( x e. RR |-> ( cos ` x ) ) ) = ( x e. RR |-> -u ( sin ` x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reelprrecn | |- RR e. { RR , CC } |
|
| 2 | cosf | |- cos : CC --> CC |
|
| 3 | ssid | |- CC C_ CC |
|
| 4 | nfcv | |- F/_ x RR |
|
| 5 | nfrab1 | |- F/_ x { x e. CC | -u ( sin ` x ) e. _V } |
|
| 6 | 4 5 | dfssf | |- ( RR C_ { x e. CC | -u ( sin ` x ) e. _V } <-> A. x ( x e. RR -> x e. { x e. CC | -u ( sin ` x ) e. _V } ) ) |
| 7 | recn | |- ( x e. RR -> x e. CC ) |
|
| 8 | 7 | sincld | |- ( x e. RR -> ( sin ` x ) e. CC ) |
| 9 | 8 | negcld | |- ( x e. RR -> -u ( sin ` x ) e. CC ) |
| 10 | elex | |- ( -u ( sin ` x ) e. CC -> -u ( sin ` x ) e. _V ) |
|
| 11 | 9 10 | syl | |- ( x e. RR -> -u ( sin ` x ) e. _V ) |
| 12 | rabid | |- ( x e. { x e. CC | -u ( sin ` x ) e. _V } <-> ( x e. CC /\ -u ( sin ` x ) e. _V ) ) |
|
| 13 | 7 11 12 | sylanbrc | |- ( x e. RR -> x e. { x e. CC | -u ( sin ` x ) e. _V } ) |
| 14 | 6 13 | mpgbir | |- RR C_ { x e. CC | -u ( sin ` x ) e. _V } |
| 15 | dvcos | |- ( CC _D cos ) = ( x e. CC |-> -u ( sin ` x ) ) |
|
| 16 | 15 | dmmpt | |- dom ( CC _D cos ) = { x e. CC | -u ( sin ` x ) e. _V } |
| 17 | 14 16 | sseqtrri | |- RR C_ dom ( CC _D cos ) |
| 18 | dvres3 | |- ( ( ( RR e. { RR , CC } /\ cos : CC --> CC ) /\ ( CC C_ CC /\ RR C_ dom ( CC _D cos ) ) ) -> ( RR _D ( cos |` RR ) ) = ( ( CC _D cos ) |` RR ) ) |
|
| 19 | 1 2 3 17 18 | mp4an | |- ( RR _D ( cos |` RR ) ) = ( ( CC _D cos ) |` RR ) |
| 20 | ffn | |- ( cos : CC --> CC -> cos Fn CC ) |
|
| 21 | 2 20 | ax-mp | |- cos Fn CC |
| 22 | dffn5 | |- ( cos Fn CC <-> cos = ( x e. CC |-> ( cos ` x ) ) ) |
|
| 23 | 21 22 | mpbi | |- cos = ( x e. CC |-> ( cos ` x ) ) |
| 24 | 23 | reseq1i | |- ( cos |` RR ) = ( ( x e. CC |-> ( cos ` x ) ) |` RR ) |
| 25 | ax-resscn | |- RR C_ CC |
|
| 26 | resmpt | |- ( RR C_ CC -> ( ( x e. CC |-> ( cos ` x ) ) |` RR ) = ( x e. RR |-> ( cos ` x ) ) ) |
|
| 27 | 25 26 | ax-mp | |- ( ( x e. CC |-> ( cos ` x ) ) |` RR ) = ( x e. RR |-> ( cos ` x ) ) |
| 28 | 24 27 | eqtri | |- ( cos |` RR ) = ( x e. RR |-> ( cos ` x ) ) |
| 29 | 28 | oveq2i | |- ( RR _D ( cos |` RR ) ) = ( RR _D ( x e. RR |-> ( cos ` x ) ) ) |
| 30 | 15 | reseq1i | |- ( ( CC _D cos ) |` RR ) = ( ( x e. CC |-> -u ( sin ` x ) ) |` RR ) |
| 31 | resmpt | |- ( RR C_ CC -> ( ( x e. CC |-> -u ( sin ` x ) ) |` RR ) = ( x e. RR |-> -u ( sin ` x ) ) ) |
|
| 32 | 25 31 | ax-mp | |- ( ( x e. CC |-> -u ( sin ` x ) ) |` RR ) = ( x e. RR |-> -u ( sin ` x ) ) |
| 33 | 30 32 | eqtri | |- ( ( CC _D cos ) |` RR ) = ( x e. RR |-> -u ( sin ` x ) ) |
| 34 | 19 29 33 | 3eqtr3i | |- ( RR _D ( x e. RR |-> ( cos ` x ) ) ) = ( x e. RR |-> -u ( sin ` x ) ) |