This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fpwwe2 . (Contributed by Mario Carneiro, 15-May-2015) (Revised by AV, 20-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fpwwe2.1 | |- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } |
|
| fpwwe2.2 | |- ( ph -> A e. V ) |
||
| fpwwe2.3 | |- ( ( ph /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x F r ) e. A ) |
||
| fpwwe2.4 | |- X = U. dom W |
||
| Assertion | fpwwe2lem10 | |- ( ph -> W : dom W --> ~P ( X X. X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fpwwe2.1 | |- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } |
|
| 2 | fpwwe2.2 | |- ( ph -> A e. V ) |
|
| 3 | fpwwe2.3 | |- ( ( ph /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x F r ) e. A ) |
|
| 4 | fpwwe2.4 | |- X = U. dom W |
|
| 5 | 1 | relopabiv | |- Rel W |
| 6 | 5 | a1i | |- ( ph -> Rel W ) |
| 7 | simprr | |- ( ( ( ph /\ ( w W s /\ w W t ) ) /\ ( w C_ w /\ s = ( t i^i ( w X. w ) ) ) ) -> s = ( t i^i ( w X. w ) ) ) |
|
| 8 | 1 2 | fpwwe2lem2 | |- ( ph -> ( w W t <-> ( ( w C_ A /\ t C_ ( w X. w ) ) /\ ( t We w /\ A. y e. w [. ( `' t " { y } ) / u ]. ( u F ( t i^i ( u X. u ) ) ) = y ) ) ) ) |
| 9 | 8 | simprbda | |- ( ( ph /\ w W t ) -> ( w C_ A /\ t C_ ( w X. w ) ) ) |
| 10 | 9 | simprd | |- ( ( ph /\ w W t ) -> t C_ ( w X. w ) ) |
| 11 | 10 | adantrl | |- ( ( ph /\ ( w W s /\ w W t ) ) -> t C_ ( w X. w ) ) |
| 12 | 11 | adantr | |- ( ( ( ph /\ ( w W s /\ w W t ) ) /\ ( w C_ w /\ s = ( t i^i ( w X. w ) ) ) ) -> t C_ ( w X. w ) ) |
| 13 | dfss2 | |- ( t C_ ( w X. w ) <-> ( t i^i ( w X. w ) ) = t ) |
|
| 14 | 12 13 | sylib | |- ( ( ( ph /\ ( w W s /\ w W t ) ) /\ ( w C_ w /\ s = ( t i^i ( w X. w ) ) ) ) -> ( t i^i ( w X. w ) ) = t ) |
| 15 | 7 14 | eqtrd | |- ( ( ( ph /\ ( w W s /\ w W t ) ) /\ ( w C_ w /\ s = ( t i^i ( w X. w ) ) ) ) -> s = t ) |
| 16 | simprr | |- ( ( ( ph /\ ( w W s /\ w W t ) ) /\ ( w C_ w /\ t = ( s i^i ( w X. w ) ) ) ) -> t = ( s i^i ( w X. w ) ) ) |
|
| 17 | 1 2 | fpwwe2lem2 | |- ( ph -> ( w W s <-> ( ( w C_ A /\ s C_ ( w X. w ) ) /\ ( s We w /\ A. y e. w [. ( `' s " { y } ) / u ]. ( u F ( s i^i ( u X. u ) ) ) = y ) ) ) ) |
| 18 | 17 | simprbda | |- ( ( ph /\ w W s ) -> ( w C_ A /\ s C_ ( w X. w ) ) ) |
| 19 | 18 | simprd | |- ( ( ph /\ w W s ) -> s C_ ( w X. w ) ) |
| 20 | 19 | adantrr | |- ( ( ph /\ ( w W s /\ w W t ) ) -> s C_ ( w X. w ) ) |
| 21 | 20 | adantr | |- ( ( ( ph /\ ( w W s /\ w W t ) ) /\ ( w C_ w /\ t = ( s i^i ( w X. w ) ) ) ) -> s C_ ( w X. w ) ) |
| 22 | dfss2 | |- ( s C_ ( w X. w ) <-> ( s i^i ( w X. w ) ) = s ) |
|
| 23 | 21 22 | sylib | |- ( ( ( ph /\ ( w W s /\ w W t ) ) /\ ( w C_ w /\ t = ( s i^i ( w X. w ) ) ) ) -> ( s i^i ( w X. w ) ) = s ) |
| 24 | 16 23 | eqtr2d | |- ( ( ( ph /\ ( w W s /\ w W t ) ) /\ ( w C_ w /\ t = ( s i^i ( w X. w ) ) ) ) -> s = t ) |
| 25 | 2 | adantr | |- ( ( ph /\ ( w W s /\ w W t ) ) -> A e. V ) |
| 26 | 3 | adantlr | |- ( ( ( ph /\ ( w W s /\ w W t ) ) /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x F r ) e. A ) |
| 27 | simprl | |- ( ( ph /\ ( w W s /\ w W t ) ) -> w W s ) |
|
| 28 | simprr | |- ( ( ph /\ ( w W s /\ w W t ) ) -> w W t ) |
|
| 29 | 1 25 26 27 28 | fpwwe2lem9 | |- ( ( ph /\ ( w W s /\ w W t ) ) -> ( ( w C_ w /\ s = ( t i^i ( w X. w ) ) ) \/ ( w C_ w /\ t = ( s i^i ( w X. w ) ) ) ) ) |
| 30 | 15 24 29 | mpjaodan | |- ( ( ph /\ ( w W s /\ w W t ) ) -> s = t ) |
| 31 | 30 | ex | |- ( ph -> ( ( w W s /\ w W t ) -> s = t ) ) |
| 32 | 31 | alrimiv | |- ( ph -> A. t ( ( w W s /\ w W t ) -> s = t ) ) |
| 33 | 32 | alrimivv | |- ( ph -> A. w A. s A. t ( ( w W s /\ w W t ) -> s = t ) ) |
| 34 | dffun2 | |- ( Fun W <-> ( Rel W /\ A. w A. s A. t ( ( w W s /\ w W t ) -> s = t ) ) ) |
|
| 35 | 6 33 34 | sylanbrc | |- ( ph -> Fun W ) |
| 36 | 35 | funfnd | |- ( ph -> W Fn dom W ) |
| 37 | vex | |- s e. _V |
|
| 38 | 37 | elrn | |- ( s e. ran W <-> E. w w W s ) |
| 39 | 5 | releldmi | |- ( w W s -> w e. dom W ) |
| 40 | 39 | adantl | |- ( ( ph /\ w W s ) -> w e. dom W ) |
| 41 | elssuni | |- ( w e. dom W -> w C_ U. dom W ) |
|
| 42 | 40 41 | syl | |- ( ( ph /\ w W s ) -> w C_ U. dom W ) |
| 43 | 42 4 | sseqtrrdi | |- ( ( ph /\ w W s ) -> w C_ X ) |
| 44 | xpss12 | |- ( ( w C_ X /\ w C_ X ) -> ( w X. w ) C_ ( X X. X ) ) |
|
| 45 | 43 43 44 | syl2anc | |- ( ( ph /\ w W s ) -> ( w X. w ) C_ ( X X. X ) ) |
| 46 | 19 45 | sstrd | |- ( ( ph /\ w W s ) -> s C_ ( X X. X ) ) |
| 47 | 46 | ex | |- ( ph -> ( w W s -> s C_ ( X X. X ) ) ) |
| 48 | velpw | |- ( s e. ~P ( X X. X ) <-> s C_ ( X X. X ) ) |
|
| 49 | 47 48 | imbitrrdi | |- ( ph -> ( w W s -> s e. ~P ( X X. X ) ) ) |
| 50 | 49 | exlimdv | |- ( ph -> ( E. w w W s -> s e. ~P ( X X. X ) ) ) |
| 51 | 38 50 | biimtrid | |- ( ph -> ( s e. ran W -> s e. ~P ( X X. X ) ) ) |
| 52 | 51 | ssrdv | |- ( ph -> ran W C_ ~P ( X X. X ) ) |
| 53 | df-f | |- ( W : dom W --> ~P ( X X. X ) <-> ( W Fn dom W /\ ran W C_ ~P ( X X. X ) ) ) |
|
| 54 | 36 52 53 | sylanbrc | |- ( ph -> W : dom W --> ~P ( X X. X ) ) |