This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subsets of a singleton. (Contributed by NM, 24-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sssn | |- ( A C_ { B } <-> ( A = (/) \/ A = { B } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neq0 | |- ( -. A = (/) <-> E. x x e. A ) |
|
| 2 | ssel | |- ( A C_ { B } -> ( x e. A -> x e. { B } ) ) |
|
| 3 | elsni | |- ( x e. { B } -> x = B ) |
|
| 4 | 2 3 | syl6 | |- ( A C_ { B } -> ( x e. A -> x = B ) ) |
| 5 | eleq1 | |- ( x = B -> ( x e. A <-> B e. A ) ) |
|
| 6 | 4 5 | syl6 | |- ( A C_ { B } -> ( x e. A -> ( x e. A <-> B e. A ) ) ) |
| 7 | 6 | ibd | |- ( A C_ { B } -> ( x e. A -> B e. A ) ) |
| 8 | 7 | exlimdv | |- ( A C_ { B } -> ( E. x x e. A -> B e. A ) ) |
| 9 | 1 8 | biimtrid | |- ( A C_ { B } -> ( -. A = (/) -> B e. A ) ) |
| 10 | snssi | |- ( B e. A -> { B } C_ A ) |
|
| 11 | 9 10 | syl6 | |- ( A C_ { B } -> ( -. A = (/) -> { B } C_ A ) ) |
| 12 | 11 | anc2li | |- ( A C_ { B } -> ( -. A = (/) -> ( A C_ { B } /\ { B } C_ A ) ) ) |
| 13 | eqss | |- ( A = { B } <-> ( A C_ { B } /\ { B } C_ A ) ) |
|
| 14 | 12 13 | imbitrrdi | |- ( A C_ { B } -> ( -. A = (/) -> A = { B } ) ) |
| 15 | 14 | orrd | |- ( A C_ { B } -> ( A = (/) \/ A = { B } ) ) |
| 16 | 0ss | |- (/) C_ { B } |
|
| 17 | sseq1 | |- ( A = (/) -> ( A C_ { B } <-> (/) C_ { B } ) ) |
|
| 18 | 16 17 | mpbiri | |- ( A = (/) -> A C_ { B } ) |
| 19 | eqimss | |- ( A = { B } -> A C_ { B } ) |
|
| 20 | 18 19 | jaoi | |- ( ( A = (/) \/ A = { B } ) -> A C_ { B } ) |
| 21 | 15 20 | impbii | |- ( A C_ { B } <-> ( A = (/) \/ A = { B } ) ) |