This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of a union is the union of converses. Theorem 16 of Suppes p. 62. (Contributed by NM, 25-Mar-1998) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvun | |- `' ( A u. B ) = ( `' A u. `' B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnv | |- `' ( A u. B ) = { <. x , y >. | y ( A u. B ) x } |
|
| 2 | unopab | |- ( { <. x , y >. | y A x } u. { <. x , y >. | y B x } ) = { <. x , y >. | ( y A x \/ y B x ) } |
|
| 3 | brun | |- ( y ( A u. B ) x <-> ( y A x \/ y B x ) ) |
|
| 4 | 3 | opabbii | |- { <. x , y >. | y ( A u. B ) x } = { <. x , y >. | ( y A x \/ y B x ) } |
| 5 | 2 4 | eqtr4i | |- ( { <. x , y >. | y A x } u. { <. x , y >. | y B x } ) = { <. x , y >. | y ( A u. B ) x } |
| 6 | 1 5 | eqtr4i | |- `' ( A u. B ) = ( { <. x , y >. | y A x } u. { <. x , y >. | y B x } ) |
| 7 | df-cnv | |- `' A = { <. x , y >. | y A x } |
|
| 8 | df-cnv | |- `' B = { <. x , y >. | y B x } |
|
| 9 | 7 8 | uneq12i | |- ( `' A u. `' B ) = ( { <. x , y >. | y A x } u. { <. x , y >. | y B x } ) |
| 10 | 6 9 | eqtr4i | |- `' ( A u. B ) = ( `' A u. `' B ) |