This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fpwwe2 . (Contributed by Mario Carneiro, 3-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fpwwe2.1 | |- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } |
|
| Assertion | fpwwe2cbv | |- W = { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a [. ( `' s " { z } ) / v ]. ( v F ( s i^i ( v X. v ) ) ) = z ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fpwwe2.1 | |- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } |
|
| 2 | simpl | |- ( ( x = a /\ r = s ) -> x = a ) |
|
| 3 | 2 | sseq1d | |- ( ( x = a /\ r = s ) -> ( x C_ A <-> a C_ A ) ) |
| 4 | simpr | |- ( ( x = a /\ r = s ) -> r = s ) |
|
| 5 | 2 | sqxpeqd | |- ( ( x = a /\ r = s ) -> ( x X. x ) = ( a X. a ) ) |
| 6 | 4 5 | sseq12d | |- ( ( x = a /\ r = s ) -> ( r C_ ( x X. x ) <-> s C_ ( a X. a ) ) ) |
| 7 | 3 6 | anbi12d | |- ( ( x = a /\ r = s ) -> ( ( x C_ A /\ r C_ ( x X. x ) ) <-> ( a C_ A /\ s C_ ( a X. a ) ) ) ) |
| 8 | 4 2 | weeq12d | |- ( ( x = a /\ r = s ) -> ( r We x <-> s We a ) ) |
| 9 | id | |- ( u = v -> u = v ) |
|
| 10 | 9 | sqxpeqd | |- ( u = v -> ( u X. u ) = ( v X. v ) ) |
| 11 | 10 | ineq2d | |- ( u = v -> ( r i^i ( u X. u ) ) = ( r i^i ( v X. v ) ) ) |
| 12 | 9 11 | oveq12d | |- ( u = v -> ( u F ( r i^i ( u X. u ) ) ) = ( v F ( r i^i ( v X. v ) ) ) ) |
| 13 | 12 | eqeq1d | |- ( u = v -> ( ( u F ( r i^i ( u X. u ) ) ) = y <-> ( v F ( r i^i ( v X. v ) ) ) = y ) ) |
| 14 | 13 | cbvsbcvw | |- ( [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y <-> [. ( `' r " { y } ) / v ]. ( v F ( r i^i ( v X. v ) ) ) = y ) |
| 15 | sneq | |- ( y = z -> { y } = { z } ) |
|
| 16 | 15 | imaeq2d | |- ( y = z -> ( `' r " { y } ) = ( `' r " { z } ) ) |
| 17 | eqeq2 | |- ( y = z -> ( ( v F ( r i^i ( v X. v ) ) ) = y <-> ( v F ( r i^i ( v X. v ) ) ) = z ) ) |
|
| 18 | 16 17 | sbceqbid | |- ( y = z -> ( [. ( `' r " { y } ) / v ]. ( v F ( r i^i ( v X. v ) ) ) = y <-> [. ( `' r " { z } ) / v ]. ( v F ( r i^i ( v X. v ) ) ) = z ) ) |
| 19 | 14 18 | bitrid | |- ( y = z -> ( [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y <-> [. ( `' r " { z } ) / v ]. ( v F ( r i^i ( v X. v ) ) ) = z ) ) |
| 20 | 19 | cbvralvw | |- ( A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y <-> A. z e. x [. ( `' r " { z } ) / v ]. ( v F ( r i^i ( v X. v ) ) ) = z ) |
| 21 | 4 | cnveqd | |- ( ( x = a /\ r = s ) -> `' r = `' s ) |
| 22 | 21 | imaeq1d | |- ( ( x = a /\ r = s ) -> ( `' r " { z } ) = ( `' s " { z } ) ) |
| 23 | 4 | ineq1d | |- ( ( x = a /\ r = s ) -> ( r i^i ( v X. v ) ) = ( s i^i ( v X. v ) ) ) |
| 24 | 23 | oveq2d | |- ( ( x = a /\ r = s ) -> ( v F ( r i^i ( v X. v ) ) ) = ( v F ( s i^i ( v X. v ) ) ) ) |
| 25 | 24 | eqeq1d | |- ( ( x = a /\ r = s ) -> ( ( v F ( r i^i ( v X. v ) ) ) = z <-> ( v F ( s i^i ( v X. v ) ) ) = z ) ) |
| 26 | 22 25 | sbceqbid | |- ( ( x = a /\ r = s ) -> ( [. ( `' r " { z } ) / v ]. ( v F ( r i^i ( v X. v ) ) ) = z <-> [. ( `' s " { z } ) / v ]. ( v F ( s i^i ( v X. v ) ) ) = z ) ) |
| 27 | 2 26 | raleqbidv | |- ( ( x = a /\ r = s ) -> ( A. z e. x [. ( `' r " { z } ) / v ]. ( v F ( r i^i ( v X. v ) ) ) = z <-> A. z e. a [. ( `' s " { z } ) / v ]. ( v F ( s i^i ( v X. v ) ) ) = z ) ) |
| 28 | 20 27 | bitrid | |- ( ( x = a /\ r = s ) -> ( A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y <-> A. z e. a [. ( `' s " { z } ) / v ]. ( v F ( s i^i ( v X. v ) ) ) = z ) ) |
| 29 | 8 28 | anbi12d | |- ( ( x = a /\ r = s ) -> ( ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) <-> ( s We a /\ A. z e. a [. ( `' s " { z } ) / v ]. ( v F ( s i^i ( v X. v ) ) ) = z ) ) ) |
| 30 | 7 29 | anbi12d | |- ( ( x = a /\ r = s ) -> ( ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) <-> ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a [. ( `' s " { z } ) / v ]. ( v F ( s i^i ( v X. v ) ) ) = z ) ) ) ) |
| 31 | 30 | cbvopabv | |- { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } = { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a [. ( `' s " { z } ) / v ]. ( v F ( s i^i ( v X. v ) ) ) = z ) ) } |
| 32 | 1 31 | eqtri | |- W = { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a [. ( `' s " { z } ) / v ]. ( v F ( s i^i ( v X. v ) ) ) = z ) ) } |