This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fpwwe2 . (Contributed by Mario Carneiro, 19-May-2015) (Revised by AV, 20-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fpwwe2.1 | |- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } |
|
| fpwwe2.2 | |- ( ph -> A e. V ) |
||
| fpwwe2lem3.4 | |- ( ph -> X W R ) |
||
| Assertion | fpwwe2lem3 | |- ( ( ph /\ B e. X ) -> ( ( `' R " { B } ) F ( R i^i ( ( `' R " { B } ) X. ( `' R " { B } ) ) ) ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fpwwe2.1 | |- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } |
|
| 2 | fpwwe2.2 | |- ( ph -> A e. V ) |
|
| 3 | fpwwe2lem3.4 | |- ( ph -> X W R ) |
|
| 4 | 1 2 | fpwwe2lem2 | |- ( ph -> ( X W R <-> ( ( X C_ A /\ R C_ ( X X. X ) ) /\ ( R We X /\ A. y e. X [. ( `' R " { y } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = y ) ) ) ) |
| 5 | 3 4 | mpbid | |- ( ph -> ( ( X C_ A /\ R C_ ( X X. X ) ) /\ ( R We X /\ A. y e. X [. ( `' R " { y } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = y ) ) ) |
| 6 | 5 | simprrd | |- ( ph -> A. y e. X [. ( `' R " { y } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = y ) |
| 7 | sneq | |- ( y = B -> { y } = { B } ) |
|
| 8 | 7 | imaeq2d | |- ( y = B -> ( `' R " { y } ) = ( `' R " { B } ) ) |
| 9 | eqeq2 | |- ( y = B -> ( ( u F ( R i^i ( u X. u ) ) ) = y <-> ( u F ( R i^i ( u X. u ) ) ) = B ) ) |
|
| 10 | 8 9 | sbceqbid | |- ( y = B -> ( [. ( `' R " { y } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = y <-> [. ( `' R " { B } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = B ) ) |
| 11 | 10 | rspccva | |- ( ( A. y e. X [. ( `' R " { y } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = y /\ B e. X ) -> [. ( `' R " { B } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = B ) |
| 12 | 6 11 | sylan | |- ( ( ph /\ B e. X ) -> [. ( `' R " { B } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = B ) |
| 13 | cnvimass | |- ( `' R " { B } ) C_ dom R |
|
| 14 | 1 | relopabiv | |- Rel W |
| 15 | 14 | brrelex2i | |- ( X W R -> R e. _V ) |
| 16 | dmexg | |- ( R e. _V -> dom R e. _V ) |
|
| 17 | 3 15 16 | 3syl | |- ( ph -> dom R e. _V ) |
| 18 | ssexg | |- ( ( ( `' R " { B } ) C_ dom R /\ dom R e. _V ) -> ( `' R " { B } ) e. _V ) |
|
| 19 | 13 17 18 | sylancr | |- ( ph -> ( `' R " { B } ) e. _V ) |
| 20 | id | |- ( u = ( `' R " { B } ) -> u = ( `' R " { B } ) ) |
|
| 21 | 20 | sqxpeqd | |- ( u = ( `' R " { B } ) -> ( u X. u ) = ( ( `' R " { B } ) X. ( `' R " { B } ) ) ) |
| 22 | 21 | ineq2d | |- ( u = ( `' R " { B } ) -> ( R i^i ( u X. u ) ) = ( R i^i ( ( `' R " { B } ) X. ( `' R " { B } ) ) ) ) |
| 23 | 20 22 | oveq12d | |- ( u = ( `' R " { B } ) -> ( u F ( R i^i ( u X. u ) ) ) = ( ( `' R " { B } ) F ( R i^i ( ( `' R " { B } ) X. ( `' R " { B } ) ) ) ) ) |
| 24 | 23 | eqeq1d | |- ( u = ( `' R " { B } ) -> ( ( u F ( R i^i ( u X. u ) ) ) = B <-> ( ( `' R " { B } ) F ( R i^i ( ( `' R " { B } ) X. ( `' R " { B } ) ) ) ) = B ) ) |
| 25 | 24 | sbcieg | |- ( ( `' R " { B } ) e. _V -> ( [. ( `' R " { B } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = B <-> ( ( `' R " { B } ) F ( R i^i ( ( `' R " { B } ) X. ( `' R " { B } ) ) ) ) = B ) ) |
| 26 | 19 25 | syl | |- ( ph -> ( [. ( `' R " { B } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = B <-> ( ( `' R " { B } ) F ( R i^i ( ( `' R " { B } ) X. ( `' R " { B } ) ) ) ) = B ) ) |
| 27 | 26 | adantr | |- ( ( ph /\ B e. X ) -> ( [. ( `' R " { B } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = B <-> ( ( `' R " { B } ) F ( R i^i ( ( `' R " { B } ) X. ( `' R " { B } ) ) ) ) = B ) ) |
| 28 | 12 27 | mpbid | |- ( ( ph /\ B e. X ) -> ( ( `' R " { B } ) F ( R i^i ( ( `' R " { B } ) X. ( `' R " { B } ) ) ) ) = B ) |