This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a constant function (or other Cartesian product). (Contributed by Stefan O'Rear, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpssres | |- ( C C_ A -> ( ( A X. B ) |` C ) = ( C X. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res | |- ( ( A X. B ) |` C ) = ( ( A X. B ) i^i ( C X. _V ) ) |
|
| 2 | inxp | |- ( ( A X. B ) i^i ( C X. _V ) ) = ( ( A i^i C ) X. ( B i^i _V ) ) |
|
| 3 | inv1 | |- ( B i^i _V ) = B |
|
| 4 | 3 | xpeq2i | |- ( ( A i^i C ) X. ( B i^i _V ) ) = ( ( A i^i C ) X. B ) |
| 5 | 1 2 4 | 3eqtri | |- ( ( A X. B ) |` C ) = ( ( A i^i C ) X. B ) |
| 6 | sseqin2 | |- ( C C_ A <-> ( A i^i C ) = C ) |
|
| 7 | 6 | biimpi | |- ( C C_ A -> ( A i^i C ) = C ) |
| 8 | 7 | xpeq1d | |- ( C C_ A -> ( ( A i^i C ) X. B ) = ( C X. B ) ) |
| 9 | 5 8 | eqtrid | |- ( C C_ A -> ( ( A X. B ) |` C ) = ( C X. B ) ) |