This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fpwwe2 . (Contributed by Mario Carneiro, 15-May-2015) (Revised by AV, 20-Jul-2024) (Proof shortened by Matthew House, 10-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fpwwe2.1 | |- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } |
|
| fpwwe2.2 | |- ( ph -> A e. V ) |
||
| fpwwe2.3 | |- ( ( ph /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x F r ) e. A ) |
||
| Assertion | fpwwe2lem4 | |- ( ( ph /\ ( X C_ A /\ R C_ ( X X. X ) /\ R We X ) ) -> ( X F R ) e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fpwwe2.1 | |- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } |
|
| 2 | fpwwe2.2 | |- ( ph -> A e. V ) |
|
| 3 | fpwwe2.3 | |- ( ( ph /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x F r ) e. A ) |
|
| 4 | 2 | adantr | |- ( ( ph /\ ( X C_ A /\ R C_ ( X X. X ) /\ R We X ) ) -> A e. V ) |
| 5 | simpr1 | |- ( ( ph /\ ( X C_ A /\ R C_ ( X X. X ) /\ R We X ) ) -> X C_ A ) |
|
| 6 | 4 5 | ssexd | |- ( ( ph /\ ( X C_ A /\ R C_ ( X X. X ) /\ R We X ) ) -> X e. _V ) |
| 7 | 6 6 | xpexd | |- ( ( ph /\ ( X C_ A /\ R C_ ( X X. X ) /\ R We X ) ) -> ( X X. X ) e. _V ) |
| 8 | simpr2 | |- ( ( ph /\ ( X C_ A /\ R C_ ( X X. X ) /\ R We X ) ) -> R C_ ( X X. X ) ) |
|
| 9 | 7 8 | ssexd | |- ( ( ph /\ ( X C_ A /\ R C_ ( X X. X ) /\ R We X ) ) -> R e. _V ) |
| 10 | simpl | |- ( ( x = X /\ r = R ) -> x = X ) |
|
| 11 | 10 | sseq1d | |- ( ( x = X /\ r = R ) -> ( x C_ A <-> X C_ A ) ) |
| 12 | simpr | |- ( ( x = X /\ r = R ) -> r = R ) |
|
| 13 | 10 | sqxpeqd | |- ( ( x = X /\ r = R ) -> ( x X. x ) = ( X X. X ) ) |
| 14 | 12 13 | sseq12d | |- ( ( x = X /\ r = R ) -> ( r C_ ( x X. x ) <-> R C_ ( X X. X ) ) ) |
| 15 | 12 10 | weeq12d | |- ( ( x = X /\ r = R ) -> ( r We x <-> R We X ) ) |
| 16 | 11 14 15 | 3anbi123d | |- ( ( x = X /\ r = R ) -> ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) <-> ( X C_ A /\ R C_ ( X X. X ) /\ R We X ) ) ) |
| 17 | oveq12 | |- ( ( x = X /\ r = R ) -> ( x F r ) = ( X F R ) ) |
|
| 18 | 17 | eleq1d | |- ( ( x = X /\ r = R ) -> ( ( x F r ) e. A <-> ( X F R ) e. A ) ) |
| 19 | 16 18 | imbi12d | |- ( ( x = X /\ r = R ) -> ( ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) -> ( x F r ) e. A ) <-> ( ( X C_ A /\ R C_ ( X X. X ) /\ R We X ) -> ( X F R ) e. A ) ) ) |
| 20 | 3 | ex | |- ( ph -> ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) -> ( x F r ) e. A ) ) |
| 21 | 20 | adantr | |- ( ( ph /\ ( X C_ A /\ R C_ ( X X. X ) /\ R We X ) ) -> ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) -> ( x F r ) e. A ) ) |
| 22 | 6 9 19 21 | vtocl2d | |- ( ( ph /\ ( X C_ A /\ R C_ ( X X. X ) /\ R We X ) ) -> ( ( X C_ A /\ R C_ ( X X. X ) /\ R We X ) -> ( X F R ) e. A ) ) |
| 23 | 22 | syldbl2 | |- ( ( ph /\ ( X C_ A /\ R C_ ( X X. X ) /\ R We X ) ) -> ( X F R ) e. A ) |