This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of a Cartesian product. Exercise 11 of Suppes p. 67. (Contributed by NM, 14-Aug-1999) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvxp | |- `' ( A X. B ) = ( B X. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvopab | |- `' { <. y , x >. | ( y e. A /\ x e. B ) } = { <. x , y >. | ( y e. A /\ x e. B ) } |
|
| 2 | ancom | |- ( ( y e. A /\ x e. B ) <-> ( x e. B /\ y e. A ) ) |
|
| 3 | 2 | opabbii | |- { <. x , y >. | ( y e. A /\ x e. B ) } = { <. x , y >. | ( x e. B /\ y e. A ) } |
| 4 | 1 3 | eqtri | |- `' { <. y , x >. | ( y e. A /\ x e. B ) } = { <. x , y >. | ( x e. B /\ y e. A ) } |
| 5 | df-xp | |- ( A X. B ) = { <. y , x >. | ( y e. A /\ x e. B ) } |
|
| 6 | 5 | cnveqi | |- `' ( A X. B ) = `' { <. y , x >. | ( y e. A /\ x e. B ) } |
| 7 | df-xp | |- ( B X. A ) = { <. x , y >. | ( x e. B /\ y e. A ) } |
|
| 8 | 4 6 7 | 3eqtr4i | |- `' ( A X. B ) = ( B X. A ) |