This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition equivalent to inclusion in the union of two classes. (Contributed by NM, 26-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssundif | |- ( A C_ ( B u. C ) <-> ( A \ B ) C_ C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.6 | |- ( ( ( x e. A /\ -. x e. B ) -> x e. C ) <-> ( x e. A -> ( x e. B \/ x e. C ) ) ) |
|
| 2 | eldif | |- ( x e. ( A \ B ) <-> ( x e. A /\ -. x e. B ) ) |
|
| 3 | 2 | imbi1i | |- ( ( x e. ( A \ B ) -> x e. C ) <-> ( ( x e. A /\ -. x e. B ) -> x e. C ) ) |
| 4 | elun | |- ( x e. ( B u. C ) <-> ( x e. B \/ x e. C ) ) |
|
| 5 | 4 | imbi2i | |- ( ( x e. A -> x e. ( B u. C ) ) <-> ( x e. A -> ( x e. B \/ x e. C ) ) ) |
| 6 | 1 3 5 | 3bitr4ri | |- ( ( x e. A -> x e. ( B u. C ) ) <-> ( x e. ( A \ B ) -> x e. C ) ) |
| 7 | 6 | albii | |- ( A. x ( x e. A -> x e. ( B u. C ) ) <-> A. x ( x e. ( A \ B ) -> x e. C ) ) |
| 8 | df-ss | |- ( A C_ ( B u. C ) <-> A. x ( x e. A -> x e. ( B u. C ) ) ) |
|
| 9 | df-ss | |- ( ( A \ B ) C_ C <-> A. x ( x e. ( A \ B ) -> x e. C ) ) |
|
| 10 | 7 8 9 | 3bitr4i | |- ( A C_ ( B u. C ) <-> ( A \ B ) C_ C ) |