This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A strict order relation is linear (satisfies trichotomy). (Contributed by NM, 21-Jan-1996)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | solin | |- ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( B R C \/ B = C \/ C R B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | |- ( x = B -> ( x R y <-> B R y ) ) |
|
| 2 | eqeq1 | |- ( x = B -> ( x = y <-> B = y ) ) |
|
| 3 | breq2 | |- ( x = B -> ( y R x <-> y R B ) ) |
|
| 4 | 1 2 3 | 3orbi123d | |- ( x = B -> ( ( x R y \/ x = y \/ y R x ) <-> ( B R y \/ B = y \/ y R B ) ) ) |
| 5 | 4 | imbi2d | |- ( x = B -> ( ( R Or A -> ( x R y \/ x = y \/ y R x ) ) <-> ( R Or A -> ( B R y \/ B = y \/ y R B ) ) ) ) |
| 6 | breq2 | |- ( y = C -> ( B R y <-> B R C ) ) |
|
| 7 | eqeq2 | |- ( y = C -> ( B = y <-> B = C ) ) |
|
| 8 | breq1 | |- ( y = C -> ( y R B <-> C R B ) ) |
|
| 9 | 6 7 8 | 3orbi123d | |- ( y = C -> ( ( B R y \/ B = y \/ y R B ) <-> ( B R C \/ B = C \/ C R B ) ) ) |
| 10 | 9 | imbi2d | |- ( y = C -> ( ( R Or A -> ( B R y \/ B = y \/ y R B ) ) <-> ( R Or A -> ( B R C \/ B = C \/ C R B ) ) ) ) |
| 11 | df-so | |- ( R Or A <-> ( R Po A /\ A. x e. A A. y e. A ( x R y \/ x = y \/ y R x ) ) ) |
|
| 12 | breq1 | |- ( x = z -> ( x R y <-> z R y ) ) |
|
| 13 | equequ1 | |- ( x = z -> ( x = y <-> z = y ) ) |
|
| 14 | breq2 | |- ( x = z -> ( y R x <-> y R z ) ) |
|
| 15 | 12 13 14 | 3orbi123d | |- ( x = z -> ( ( x R y \/ x = y \/ y R x ) <-> ( z R y \/ z = y \/ y R z ) ) ) |
| 16 | 15 | ralbidv | |- ( x = z -> ( A. y e. A ( x R y \/ x = y \/ y R x ) <-> A. y e. A ( z R y \/ z = y \/ y R z ) ) ) |
| 17 | 16 | rspw | |- ( A. x e. A A. y e. A ( x R y \/ x = y \/ y R x ) -> ( x e. A -> A. y e. A ( x R y \/ x = y \/ y R x ) ) ) |
| 18 | breq2 | |- ( y = z -> ( x R y <-> x R z ) ) |
|
| 19 | equequ2 | |- ( y = z -> ( x = y <-> x = z ) ) |
|
| 20 | breq1 | |- ( y = z -> ( y R x <-> z R x ) ) |
|
| 21 | 18 19 20 | 3orbi123d | |- ( y = z -> ( ( x R y \/ x = y \/ y R x ) <-> ( x R z \/ x = z \/ z R x ) ) ) |
| 22 | 21 | rspw | |- ( A. y e. A ( x R y \/ x = y \/ y R x ) -> ( y e. A -> ( x R y \/ x = y \/ y R x ) ) ) |
| 23 | 17 22 | syl6 | |- ( A. x e. A A. y e. A ( x R y \/ x = y \/ y R x ) -> ( x e. A -> ( y e. A -> ( x R y \/ x = y \/ y R x ) ) ) ) |
| 24 | 23 | impd | |- ( A. x e. A A. y e. A ( x R y \/ x = y \/ y R x ) -> ( ( x e. A /\ y e. A ) -> ( x R y \/ x = y \/ y R x ) ) ) |
| 25 | 11 24 | simplbiim | |- ( R Or A -> ( ( x e. A /\ y e. A ) -> ( x R y \/ x = y \/ y R x ) ) ) |
| 26 | 25 | com12 | |- ( ( x e. A /\ y e. A ) -> ( R Or A -> ( x R y \/ x = y \/ y R x ) ) ) |
| 27 | 5 10 26 | vtocl2ga | |- ( ( B e. A /\ C e. A ) -> ( R Or A -> ( B R C \/ B = C \/ C R B ) ) ) |
| 28 | 27 | impcom | |- ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( B R C \/ B = C \/ C R B ) ) |