This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Intersection of two Cartesian products. Exercise 9 of TakeutiZaring p. 25. (Contributed by NM, 3-Aug-1994) (Proof shortened by Andrew Salmon, 27-Aug-2011) Avoid ax-10 , ax-12 . (Revised by SN, 5-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inxp | |- ( ( A X. B ) i^i ( C X. D ) ) = ( ( A i^i C ) X. ( B i^i D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relinxp | |- Rel ( ( A X. B ) i^i ( C X. D ) ) |
|
| 2 | relxp | |- Rel ( ( A i^i C ) X. ( B i^i D ) ) |
|
| 3 | an4 | |- ( ( ( x e. A /\ y e. B ) /\ ( x e. C /\ y e. D ) ) <-> ( ( x e. A /\ x e. C ) /\ ( y e. B /\ y e. D ) ) ) |
|
| 4 | opelxp | |- ( <. x , y >. e. ( A X. B ) <-> ( x e. A /\ y e. B ) ) |
|
| 5 | opelxp | |- ( <. x , y >. e. ( C X. D ) <-> ( x e. C /\ y e. D ) ) |
|
| 6 | 4 5 | anbi12i | |- ( ( <. x , y >. e. ( A X. B ) /\ <. x , y >. e. ( C X. D ) ) <-> ( ( x e. A /\ y e. B ) /\ ( x e. C /\ y e. D ) ) ) |
| 7 | elin | |- ( x e. ( A i^i C ) <-> ( x e. A /\ x e. C ) ) |
|
| 8 | elin | |- ( y e. ( B i^i D ) <-> ( y e. B /\ y e. D ) ) |
|
| 9 | 7 8 | anbi12i | |- ( ( x e. ( A i^i C ) /\ y e. ( B i^i D ) ) <-> ( ( x e. A /\ x e. C ) /\ ( y e. B /\ y e. D ) ) ) |
| 10 | 3 6 9 | 3bitr4i | |- ( ( <. x , y >. e. ( A X. B ) /\ <. x , y >. e. ( C X. D ) ) <-> ( x e. ( A i^i C ) /\ y e. ( B i^i D ) ) ) |
| 11 | elin | |- ( <. x , y >. e. ( ( A X. B ) i^i ( C X. D ) ) <-> ( <. x , y >. e. ( A X. B ) /\ <. x , y >. e. ( C X. D ) ) ) |
|
| 12 | opelxp | |- ( <. x , y >. e. ( ( A i^i C ) X. ( B i^i D ) ) <-> ( x e. ( A i^i C ) /\ y e. ( B i^i D ) ) ) |
|
| 13 | 10 11 12 | 3bitr4i | |- ( <. x , y >. e. ( ( A X. B ) i^i ( C X. D ) ) <-> <. x , y >. e. ( ( A i^i C ) X. ( B i^i D ) ) ) |
| 14 | 1 2 13 | eqrelriiv | |- ( ( A X. B ) i^i ( C X. D ) ) = ( ( A i^i C ) X. ( B i^i D ) ) |