This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014) Avoid ax-10 , ax-12 . (Revised by GG, 12-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbcied.1 | |- ( ph -> A e. V ) |
|
| sbcied.2 | |- ( ( ph /\ x = A ) -> ( ps <-> ch ) ) |
||
| Assertion | sbcied | |- ( ph -> ( [. A / x ]. ps <-> ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcied.1 | |- ( ph -> A e. V ) |
|
| 2 | sbcied.2 | |- ( ( ph /\ x = A ) -> ( ps <-> ch ) ) |
|
| 3 | df-sbc | |- ( [. A / x ]. ps <-> A e. { x | ps } ) |
|
| 4 | 1 2 | elabd3 | |- ( ph -> ( A e. { x | ps } <-> ch ) ) |
| 5 | 3 4 | bitrid | |- ( ph -> ( [. A / x ]. ps <-> ch ) ) |