This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction for combining cases. (Contributed by NM, 9-May-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ccased.1 | |- ( ph -> ( ( ps /\ ch ) -> et ) ) |
|
| ccased.2 | |- ( ph -> ( ( th /\ ch ) -> et ) ) |
||
| ccased.3 | |- ( ph -> ( ( ps /\ ta ) -> et ) ) |
||
| ccased.4 | |- ( ph -> ( ( th /\ ta ) -> et ) ) |
||
| Assertion | ccased | |- ( ph -> ( ( ( ps \/ th ) /\ ( ch \/ ta ) ) -> et ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccased.1 | |- ( ph -> ( ( ps /\ ch ) -> et ) ) |
|
| 2 | ccased.2 | |- ( ph -> ( ( th /\ ch ) -> et ) ) |
|
| 3 | ccased.3 | |- ( ph -> ( ( ps /\ ta ) -> et ) ) |
|
| 4 | ccased.4 | |- ( ph -> ( ( th /\ ta ) -> et ) ) |
|
| 5 | 1 | com12 | |- ( ( ps /\ ch ) -> ( ph -> et ) ) |
| 6 | 2 | com12 | |- ( ( th /\ ch ) -> ( ph -> et ) ) |
| 7 | 3 | com12 | |- ( ( ps /\ ta ) -> ( ph -> et ) ) |
| 8 | 4 | com12 | |- ( ( th /\ ta ) -> ( ph -> et ) ) |
| 9 | 5 6 7 8 | ccase | |- ( ( ( ps \/ th ) /\ ( ch \/ ta ) ) -> ( ph -> et ) ) |
| 10 | 9 | com12 | |- ( ph -> ( ( ( ps \/ th ) /\ ( ch \/ ta ) ) -> et ) ) |