This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absorption of difference by union. This decomposes a union into two disjoint classes (see disjdif ). Theorem 35 of Suppes p. 29. (Contributed by NM, 19-May-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | undif1 | |- ( ( A \ B ) u. B ) = ( A u. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | undir | |- ( ( A i^i ( _V \ B ) ) u. B ) = ( ( A u. B ) i^i ( ( _V \ B ) u. B ) ) |
|
| 2 | invdif | |- ( A i^i ( _V \ B ) ) = ( A \ B ) |
|
| 3 | 2 | uneq1i | |- ( ( A i^i ( _V \ B ) ) u. B ) = ( ( A \ B ) u. B ) |
| 4 | uncom | |- ( ( _V \ B ) u. B ) = ( B u. ( _V \ B ) ) |
|
| 5 | unvdif | |- ( B u. ( _V \ B ) ) = _V |
|
| 6 | 4 5 | eqtri | |- ( ( _V \ B ) u. B ) = _V |
| 7 | 6 | ineq2i | |- ( ( A u. B ) i^i ( ( _V \ B ) u. B ) ) = ( ( A u. B ) i^i _V ) |
| 8 | inv1 | |- ( ( A u. B ) i^i _V ) = ( A u. B ) |
|
| 9 | 7 8 | eqtri | |- ( ( A u. B ) i^i ( ( _V \ B ) u. B ) ) = ( A u. B ) |
| 10 | 1 3 9 | 3eqtr3i | |- ( ( A \ B ) u. B ) = ( A u. B ) |